BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6438852)

  • 21. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols.
    Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diphenoloxidase of Mycobacterium leprae: discovery, applications and prospects.
    Prabhakaran K
    Indian J Lepr; 1988 Oct; 60(4):616-22. PubMed ID: 3150974
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition of polyphenol oxidase by copper-metallothionein from Aspergillus niger.
    Goetghebeur M; Kermasha S
    Phytochemistry; 1996 Jul; 42(4):935-40. PubMed ID: 8688193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The O-diphenoloxidase reaction with pyrocatechol for the differentiation of Cryptococcus neoformans].
    Staib F; Senska M
    Zentralbl Bakteriol Orig A; 1973 Mar; 223(2):419-20. PubMed ID: 4145851
    [No Abstract]   [Full Text] [Related]  

  • 25. Ellagic acid: characterization as substrate of polyphenol oxidase.
    Muñoz-Muñoz JL; Garcia-Molina F; Garcia-Molina M; Tudela J; García-Cánovas F; Rodriguez-Lopez JN
    IUBMB Life; 2009 Feb; 61(2):171-7. PubMed ID: 18925653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Catalytic properties of extracellular phenol oxidases from the higher basidiomycete Pleurotus ostreatus (Fr.) Kumm].
    Butovich IA; Semichaevskiĭ VD
    Ukr Biokhim Zh (1978); 1986; 58(4):18-26. PubMed ID: 3090755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and enzymatic oxidation of 4-methylcatechol in the presence and absence of L-serine. Spectrophotometric determination of intermediates.
    Cabanes J; García-Cánovas F; García-Carmona F
    Biochim Biophys Acta; 1987 Aug; 914(2):190-7. PubMed ID: 3111537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenoloxidase activity and thermostability of Cancer pagurus and Limulus polyphemus hemocyanin.
    Idakieva K; Raynova Y; Meersman F; Gielens C
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Mar; 164(3):201-9. PubMed ID: 23313741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of human tyrosinase by cysteine. Protection by dopa and tyrosine.
    Jergil B; Lindbladh C; Rorsman H; Rosengren E
    Acta Derm Venereol; 1984; 64(2):155-7. PubMed ID: 6203305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calculating molar absorptivities for quinones: application to the measurement of tyrosinase activity.
    Muñoz JL; García-Molina F; Varón R; Rodriguez-Lopez JN; García-Cánovas F; Tudela J
    Anal Biochem; 2006 Apr; 351(1):128-38. PubMed ID: 16476401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chemistry of melanin; mechanism of the oxidation of catechol by tyrosinase.
    MASON HS
    J Biol Chem; 1949 Dec; 181(2):803-12. PubMed ID: 15393799
    [No Abstract]   [Full Text] [Related]  

  • 32. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate.
    Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F
    Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification by electron spin resonance spectroscopy of the primary product of tyrosinase-catalyzed catechol oxidation.
    MASON HS; SPENCER E; YAMAZAKI I
    Biochem Biophys Res Commun; 1961 Mar; 4():236-8. PubMed ID: 13767818
    [No Abstract]   [Full Text] [Related]  

  • 35. Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols.
    Guazzaroni M; Crestini C; Saladino R
    Bioorg Med Chem; 2012 Jan; 20(1):157-66. PubMed ID: 22154294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase.
    Cooksey CJ; Garratt PJ; Land EJ; Pavel S; Ramsden CA; Riley PA; Smit NP
    J Biol Chem; 1997 Oct; 272(42):26226-35. PubMed ID: 9334191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The o-diphenol oxidase activity of arthropod hemocyanin.
    Zlateva T; Di Muro P; Salvato B; Beltramini M
    FEBS Lett; 1996 Apr; 384(3):251-4. PubMed ID: 8617365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen peroxide helps in the identification of monophenols as possible substrates of tyrosinase.
    García-Molina Mo; Muñoz-Muñoz JL; Berna J; Rodríguez-López JN; Varón R; García-Cánovas F
    Biosci Biotechnol Biochem; 2013; 77(12):2383-8. PubMed ID: 24317051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation-damaged tyrosinase molecules are inactive.
    Kempner ES; Miller JH
    Biophys J; 1989 Jan; 55(1):159-62. PubMed ID: 2495032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relation between structure of polyphenol oxidase and prevention of browning.
    Golan-Goldhirsh A; Whitaker JR; Kahn V
    Adv Exp Med Biol; 1984; 177():437-56. PubMed ID: 6437166
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.