BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 6439185)

  • 1. Composition of partially purified NADPH oxidase from pig neutrophils.
    Bellavite P; Jones OT; Cross AR; Papini E; Rossi F
    Biochem J; 1984 Nov; 223(3):639-48. PubMed ID: 6439185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity.
    Miki T; Yoshida LS; Kakinuma K
    J Biol Chem; 1992 Sep; 267(26):18695-701. PubMed ID: 1326533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation from neutrophil membranes of a complex containing active NADPH oxidase and cytochrome b-245.
    Serra MC; Bellavite P; Davoli A; Bannister JV; Rossi F
    Biochim Biophys Acta; 1984 Jul; 788(1):138-46. PubMed ID: 6743661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of pyridine nucleotide oxidizing enzymes from human neutrophils.
    Mackler B; Person R; Davis KA; Ochs H
    Biochem Int; 1985 Sep; 11(3):319-25. PubMed ID: 3933511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytochrome b and flavin content and properties of the O2- -forming NADPH oxidase solubilized from activated neutrophils.
    Bellavite P; Cross AR; Serra MC; Davoli A; Jones OT; Rossi F
    Biochim Biophys Acta; 1983 Jul; 746(1-2):40-7. PubMed ID: 6871231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the electron-transfer mechanism of the human neutrophil NADPH oxidase.
    Ellis JA; Cross AR; Jones OT
    Biochem J; 1989 Sep; 262(2):575-9. PubMed ID: 2553003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular localization of the human neutrophil NADPH oxidase. b-Cytochrome and associated flavoprotein.
    Borregaard N; Tauber AI
    J Biol Chem; 1984 Jan; 259(1):47-52. PubMed ID: 6706948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of the partially purified membrane component of the superoxide-generating NADPH oxidase of pig neutrophils with phospholipid.
    Nozaki M; Takeshige K; Sumimoto H; Minakami S
    Eur J Biochem; 1990 Jan; 187(2):335-40. PubMed ID: 2153545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of cytochrome b-245 in NADPH oxidase preparations from human neutrophils.
    Bellavite P; Cassatella MA; Papini E; Megyeri P; Rossi F
    FEBS Lett; 1986 Apr; 199(2):159-63. PubMed ID: 3699149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of the solubilized NADPH:O2 oxidoreductase of human neutrophils. Isolation of its catalytically inactive cytochrome b and flavoprotein redox centers.
    Green TR; Pratt KL
    J Biol Chem; 1988 Apr; 263(12):5617-23. PubMed ID: 3356702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the nature and activation of O2(-)-forming NADPH oxidase of leukocytes. Identification of a phosphorylated component of the active enzyme.
    Bellavite P; Papini E; Zeni L; Della Bianca V; Rossi F
    Free Radic Res Commun; 1985; 1(1):11-29. PubMed ID: 2850266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of an O2-.-generating oxidase from bovine polymorphonuclear neutrophils.
    Doussiere J; Vignais PV
    Biochemistry; 1985 Dec; 24(25):7231-9. PubMed ID: 3002451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA; Leidal KG; Pearson DW; Nauseef WM
    J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH-dependent reduction of ubiquinone-1 associated with the superoxide-forming oxidase of pig polymorphonuclear leucocytes.
    Takeshige K; Wakeyama H; Minakami S
    Biochim Biophys Acta; 1984 Mar; 798(1):127-31. PubMed ID: 6422994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the flavoprotein nature of the redox core of neutrophil NADPH oxidase.
    Escriou V; Laporte F; Vignais PV
    Biochem Biophys Res Commun; 1996 Feb; 219(3):930-5. PubMed ID: 8645281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory response of phagocytes: terminal NADPH oxidase and the mechanisms of its activation.
    Rossi F; Bellavite P; Papini E
    Ciba Found Symp; 1986; 118():172-95. PubMed ID: 3015513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low-potential (-247 mV) cytochrome b.
    Berton G; Papini E; Cassatella MA; Bellavite P; Rossi F
    Biochim Biophys Acta; 1985 Nov; 810(2):164-73. PubMed ID: 4063352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes.
    Segal AW; West I; Wientjes F; Nugent JH; Chavan AJ; Haley B; Garcia RC; Rosen H; Scrace G
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):781-8. PubMed ID: 1320378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.