These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 6439716)

  • 1. Complex I binds several mitochondrial NAD-coupled dehydrogenases.
    Sumegi B; Srere PA
    J Biol Chem; 1984 Dec; 259(24):15040-5. PubMed ID: 6439716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate channeling of NADH and binding of dehydrogenases to complex I.
    Fukushima T; Decker RV; Anderson WM; Spivey HO
    J Biol Chem; 1989 Oct; 264(28):16483-8. PubMed ID: 2506178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between NAD-dependent isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex, and NADH:ubiquinone oxidoreductase.
    Porpaczy Z; Sumegi B; Alkonyi I
    J Biol Chem; 1987 Jul; 262(20):9509-14. PubMed ID: 3110160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between pyruvate carboxylase and other mitochondrial enzymes.
    Fahien LA; Davis JW; Laboy J
    J Biol Chem; 1993 Aug; 268(24):17935-42. PubMed ID: 8349677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction.
    Fahien LA; Kmiotek EH; MacDonald MJ; Fibich B; Mandic M
    J Biol Chem; 1988 Aug; 263(22):10687-97. PubMed ID: 2899080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in NADH-ubiquinone reductase (complex I) with autolysis in the rat heart as experimental model.
    van Jaarsveld H; Potgieter GM; Lochner A
    Enzyme; 1986; 35(4):206-14. PubMed ID: 3096711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the ferricyanide reductase activities of the mitochondrial reduced nicotinamide adenine dinucleotide-ubiquinone reductase (complex I) utilizing arylazido-beta-alanyl NAD+ and arylazido-beta-alanyl NADP+.
    Chen S; Guillory RJ
    J Bioenerg Biomembr; 1985 Feb; 17(1):33-49. PubMed ID: 3921531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of malate dehydrogenase and NADH channelling to complex I.
    Ovádi J; Huang Y; Spivey HO
    J Mol Recognit; 1994 Dec; 7(4):265-72. PubMed ID: 7734152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR spectral stimulation on cluster N-1b in NADH-ubiquinone oxidoreductase of bovine heart mitochondria.
    Hearshen DO; Dunham WR; Albracht SP; Ohnishi T; Beinert H
    FEBS Lett; 1981 Oct; 133(2):287-90. PubMed ID: 6273227
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the NADH-NAD+ transhydrogenase peptide of the mitochondrial NADH-CoQ reductase (Complex I). A photodependent labeling study utilizing arylazido-beta-alanyl NAD+.
    Chen S; Guillory RJ
    J Biol Chem; 1984 Apr; 259(8):5124-31. PubMed ID: 6425285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The activity of the dehydrogenases of the tricarboxylic acid cycle and concentration of adenylic nucleotides in the brain and liver in experimental hypothyroidism].
    Glushakova NE; Misiuk EM; Taranovich GL
    Probl Endokrinol (Mosk); 1976; 22(1):50-4. PubMed ID: 1257219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the alpha-ketoglutarate dehydrogenase complex.
    Fahien LA; MacDonald MJ; Teller JK; Fibich B; Fahien CM
    J Biol Chem; 1989 Jul; 264(21):12303-12. PubMed ID: 2745445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from pig heart inner mitochondrial membrane.
    Kispal G; Sumegi B; Alkonyi I
    J Biol Chem; 1986 Oct; 261(30):14209-13. PubMed ID: 3771531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum.
    Zeikus JG; Fuchs G; Kenealy W; Thauer RK
    J Bacteriol; 1977 Nov; 132(2):604-13. PubMed ID: 914779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the enzymes of fatty acid beta-oxidation and some related enzymes to pig heart inner mitochondrial membrane.
    Sumegi B; Srere PA
    J Biol Chem; 1984 Jul; 259(14):8748-52. PubMed ID: 6378901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia.
    Rouslin W; Millard RW
    Am J Physiol; 1981 Feb; 240(2):H308-13. PubMed ID: 6451185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.