These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 6440265)

  • 1. Modulatory mechanisms of chemical carcinogenesis: the role of the NADPH pool in the benzo(a)pyrene activation.
    Feo F; Pirisi L; Pascale R; Daino L; Frassetto S; Zanetti S; Garcea R
    Toxicol Pathol; 1984; 12(3):261-8. PubMed ID: 6440265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of glucose-6-phosphate dehydrogenase deficiency on the formation of mutagenic and carcinogenic metabolites derived from benzo(a)pyrene.
    Pirisi L; Garcea R; Pascale R; Ruggiu ME; Feo F
    Toxicol Pathol; 1987; 15(1):115-9. PubMed ID: 3576073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulatory effect of glucose-6-phosphate dehydrogenase deficiency on benzo(a)pyrene toxicity and transforming activity for in vitro-cultured human skin fibroblasts.
    Feo F; Pirisi L; Pascale R; Daino L; Frassetto S; Garcea R; Gaspa L
    Cancer Res; 1984 Aug; 44(8):3419-25. PubMed ID: 6331645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzo(a)pyrene metabolism by lymphocytes from normal individuals and individuals carrying the Mediterranean variant of glucose-6-phosphate dehydrogenase.
    Feo F; Ruggiu ME; Lenzerini L; Garcea R; Daino L; Frassetto S; Addis V; Gaspa L; Pascale R
    Int J Cancer; 1987 May; 39(5):560-4. PubMed ID: 3570548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of benzo(a)pyrene metabolism on NADPH pool in normal and glucose-6-phosphate dehydrogenase deficient human fibroblasts.
    Pascale R; Ruggiu ME; Simile MM; Daino L; Vannini G; Seddaiu MA; Satta G; Feo F
    Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):361-4. PubMed ID: 2236903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glucose-6-phosphate dehydrogenase deficiency on the benz(a)pyrene toxicity for in vitro cultured human skin fibroblasts.
    Pirisi L; Pascale R; Daino L; Frassetto S; La Spina V; Zanetti S; Gaspa L; Ledda GM; Garcea R; Feo F
    Res Commun Chem Pathol Pharmacol; 1982 Nov; 38(2):301-11. PubMed ID: 6298917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased stimulation by 12-O-tetradecanoylphorbol-13-acetate of superoxide radical production by polymorphonuclear leukocytes carrying the Mediterranean variant of glucose-6-phosphate dehydrogenase.
    Pascale R; Garcea R; Ruggiu ME; Daino L; Frassetto S; Vannini MG; Cozzolino P; Lenzerini L; Feo F; Schwartz AG
    Carcinogenesis; 1987 Oct; 8(10):1567-70. PubMed ID: 2820605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose 6-phosphate dehydrogenase and the kidney.
    Spencer NY; Stanton RC
    Curr Opin Nephrol Hypertens; 2017 Jan; 26(1):43-49. PubMed ID: 27755120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence.
    Cheng ML; Ho HY; Wu YH; Chiu DT
    Free Radic Biol Med; 2004 Mar; 36(5):580-91. PubMed ID: 14980702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.
    Roth EF; Ruprecht RM; Schulman S; Vanderberg J; Olson JA
    J Clin Invest; 1986 Apr; 77(4):1129-35. PubMed ID: 2420826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glucose-6-phosphate dehydrogenase deficiency on neutrophil function.
    Ardati KO; Bajakian KM; Tabbara KS
    Acta Haematol; 1997; 97(4):211-5. PubMed ID: 9158663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of the hexose monophosphate shunt in glucose-6-phosphate dehydrogenase deficiency and closely interrelated reactions.
    Jacobasch G; Bleiber R; Schönian G
    Haematologia (Budap); 1982 Dec; 15(4):401-7. PubMed ID: 7186479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galactitol accumulation by glucose-6-phosphate deficient fibroblasts: a cellular model for resistance to the complications of diabetes mellitus.
    Kennedy A; Frank RN; Varma SD
    Life Sci; 1983 Sep; 33(13):1277-83. PubMed ID: 6412013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH-consuming enzymes correlate with glucose-6-phosphate dehydrogenase in Purkinje cells: an immunohistochemical and enzyme histochemical study of the rat cerebellar cortex.
    Ferri P; Biagiotti E; Ambrogini P; Santi S; Del Grande P; Ninfali P
    Neurosci Res; 2005 Feb; 51(2):185-97. PubMed ID: 15681036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose monophosphate shunt enzymes in lung tumors from normal and glucose-6-phosphate-dehydrogenase-deficient subjects.
    Dessì S; Batetta B; Cherchi R; Onnis R; Pisano M; Pani P
    Oncology; 1988; 45(4):287-91. PubMed ID: 3387032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD; Parker JC; Kirkman HN
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs.
    Hohl RJ; Kennedy EJ; Frischer H
    J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.