These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6440417)

  • 1. The intracarotid 133xenon injection method for measurement of cerebral blood flow (CBF) in rats: evaluation of the effect of bolus volume.
    Hertz MM; Barry DI; Hemmingsen R; Bolwig TG
    Acta Physiol Scand; 1984 Nov; 122(3):397-400. PubMed ID: 6440417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral blood flow measurement during embolization of the rat brain using the xenon injection method.
    Overgaard K; Meden P
    Neurol Res; 1998 Jul; 20(5):452-62. PubMed ID: 9664595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of [99mTc]-d,l-HM-PAO across the blood-brain barrier.
    Andersen AR; Friberg H; Knudsen KB; Barry DI; Paulson OB; Schmidt JF; Lassen NA; Neirinckx RD
    J Cereb Blood Flow Metab; 1988 Dec; 8(6):S44-51. PubMed ID: 3192642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the 133Xe bolus technique for measuring the cerebral blood flow in young and adults rats.
    Kostrzewska M; Królicki L; Niewiadomski W; Skolasińska K
    Acta Physiol Pol; 1980; 31(3):247-52. PubMed ID: 7446143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative 133Xe cerebral blood flow measurements by intravenous versus intracarotid methods.
    Young WL; Prohovnik I; Schroeder T; Correll JW; Ostapkovich N
    Anesthesiology; 1990 Oct; 73(4):637-43. PubMed ID: 2221432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats.
    Tonnesen J; Pryds A; Larsen EH; Paulson OB; Hauerberg J; Knudsen GM
    Exp Physiol; 2005 May; 90(3):349-55. PubMed ID: 15653714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intravenous 133xenon clearance technique for measuring cerebral blood flow.
    Thomas DJ; Zilkha E; Redmond S; Du Boulay GH; Marshall J; Russell RW; Symon L
    J Neurol Sci; 1979 Jan; 40(1):53-63. PubMed ID: 762594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [On the effect of dihydroergocristin-methansulfonate on human cerebral blood flow in an acute test/studies with the intracarotid 133xenon clearance method (author's transl)].
    Kohlmeyer K; Blessing J
    Arzneimittelforschung; 1978; 28(10):1788-97. PubMed ID: 114183
    [No Abstract]   [Full Text] [Related]  

  • 9. Rapid and repetitive measurements of blood flow and oxygen consumption in the rat brain using intraarterial xenon injection.
    Hertz MM; Hemmingsen R; Bolwig TG
    Acta Physiol Scand; 1977 Dec; 101(4):501-3. PubMed ID: 596227
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of electrical impedance and 133xenon clearance for the assessment of cerebral blood flow in the newborn infant.
    Colditz P; Greisen G; Pryds O
    Pediatr Res; 1988 Oct; 24(4):461-4. PubMed ID: 3140206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits.
    Wang M; Etu J; Joshi S
    J Neurosurg Anesthesiol; 2007 Oct; 19(4):249-56. PubMed ID: 17893577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Kety-Schmidt technique for repeated measurements of global cerebral blood flow and metabolism in the conscious rat.
    Linde R; Schmalbruch IK; Paulson OB; Madsen PL
    Acta Physiol Scand; 1999 Apr; 165(4):395-401. PubMed ID: 10350234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In nonhuman primates intracarotid adenosine, but not sodium nitroprusside, increases cerebral blood flow.
    Joshi S; Duong H; Mangla S; Wang M; Libow AD; Popilskis SJ; Ostapkovich ND; Wang TS; Young WL; Pile-Spellman J
    Anesth Analg; 2002 Feb; 94(2):393-9, table of contents. PubMed ID: 11812706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of propranolol on cerebral oxygen consumption and blood flow in the rat: measurements during normocapnia and hypercapnia.
    Hemmingsen R; Hertz MM; Barry DI
    Acta Physiol Scand; 1979 Mar; 105(3):274-81. PubMed ID: 35922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension.
    Wang Q; Paulson OB; Lassen NA
    J Cereb Blood Flow Metab; 1992 Nov; 12(6):947-53. PubMed ID: 1400648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locally applied 133Xenon for the measurement of regional cerebral blood flow (rCBF): an experimental study in the pig.
    Eintrei C; Leszniewski W; Odman S; Lewis DH
    Acta Physiol Scand; 1985 Jun; 124(2):261-7. PubMed ID: 4013793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of cerebral extraction of circulating compounds by the brain uptake index method: influence of circulation time, volume injection, and cerebral blood flow.
    Hardebo JE; Nilsson B
    Acta Physiol Scand; 1979 Oct; 107(2):153-9. PubMed ID: 525379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen.
    Vorstrup S; Henriksen L; Paulson OB
    J Clin Invest; 1984 Nov; 74(5):1634-9. PubMed ID: 6501565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of oral papaverine on cerebral blood flow in normals: evaluation by the xenon-133 inhalation method.
    Wang HS; Obrist WD
    Biol Psychiatry; 1976 Apr; 11(2):217-25. PubMed ID: 786379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acute cerebrovascular effects of intracarotid adenosine in nonhuman primates.
    Joshi S; Hartl R; Wang M; Feng L; Hoh D; Sciacca RR; Mangla S
    Anesth Analg; 2003 Jul; 97(1):231-7, table of contents. PubMed ID: 12818972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.