These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 6441571)

  • 1. Adenine nucleotide levels in Rhodospirillum rubrum during switch-off of whole-cell nitrogenase activity.
    Paul TD; Ludden PW
    Biochem J; 1984 Dec; 224(3):961-9. PubMed ID: 6441571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum.
    Kanemoto RH; Ludden PW
    J Bacteriol; 1984 May; 158(2):713-20. PubMed ID: 6427184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4+ or darkness.
    Li JD; Hu CZ; Yoch DC
    J Bacteriol; 1987 Jan; 169(1):231-7. PubMed ID: 2878918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid concentrations in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity.
    Kanemoto RH; Ludden PW
    J Bacteriol; 1987 Jul; 169(7):3035-43. PubMed ID: 2885306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the NAD(P)H concentration caused by addition of nitrogenase 'switch-off' effectors in Rhodospirillum rubrum G-9, as measured by fluorescence.
    Norén A; Nordlund S
    FEBS Lett; 1994 Dec; 356(1):43-5. PubMed ID: 7988717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness.
    Selao TT; Edgren T; Wang H; Norén A; Nordlund S
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1834-1840. PubMed ID: 21393366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L; Sybesma C
    Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of NAD+ as a signal during nitrogenase switch-off in Rhodospirillum rubrum.
    Norén A; Soliman A; Nordlund S
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):829-32. PubMed ID: 9148756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate.
    Akentieva N
    World J Microbiol Biotechnol; 2018 Nov; 34(12):184. PubMed ID: 30488133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the effect of NAD(H) on nitrogenase activity in Rhodospirillum rubrum.
    Soliman A; Nordlund S
    Arch Microbiol; 1992; 157(5):431-5. PubMed ID: 1510568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the regulatory form of Rhodospirillum rubrum nitrogenase as influenced by nutritional and environmental factors.
    Yoch DC; Cantu M
    J Bacteriol; 1980 Jun; 142(3):899-907. PubMed ID: 6103895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation.
    Yoch DC
    J Bacteriol; 1979 Dec; 140(3):987-95. PubMed ID: 42641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible regulation of the nitrogenase iron protein from Rhodospirillum rubrum by ADP-ribosylation in vitro.
    Lowery RG; Saari LL; Ludden PW
    J Bacteriol; 1986 May; 166(2):513-8. PubMed ID: 3084451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H2 metabolism in photosynthetic bacteria and relationship to N2 fixation.
    Willison JC; Jouanneau Y; Colbeau A; Vignais PM
    Ann Microbiol (Paris); 1983; 134B(1):115-35. PubMed ID: 6139053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenazine methosulfate mediated photoinactivation of some energy linked reactions in Rhodospirillum rubrum.
    Kerber NL; Pucheu NL; García AF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):667-71. PubMed ID: 208532
    [No Abstract]   [Full Text] [Related]  

  • 16. Nitrogenase from Rhodospirillum rubrum. Relation between 'switch-off' effect and the membrane component. Hydrogen production and acetylene reduction with different nitrogenase component ratios.
    Nordlund S; Eriksson U
    Biochim Biophys Acta; 1979 Sep; 547(3):429-37. PubMed ID: 114217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine nucleotide levels in and nitrogen fixation by the cyanobacterium Anabaena sp. strain 7120.
    Privalle LS; Burris RH
    J Bacteriol; 1983 Apr; 154(1):351-5. PubMed ID: 6403506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of nitrogen fixation in Rhodospirillum rubrum grown under dark, fermentative conditions.
    Schultz JE; Gotto JW; Weaver PF; Yoch DC
    J Bacteriol; 1985 Jun; 162(3):1322-4. PubMed ID: 3922950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source.
    Hoover TR; Ludden PW
    J Bacteriol; 1984 Jul; 159(1):400-3. PubMed ID: 6145702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia switch-off of nitrogenase from Rhodobacter sphaeroides and Methylosinus trichosporium: no evidence for Fe protein modification.
    Yoch DC; Li JD; Hu CZ; Scholin C
    Arch Microbiol; 1988 May; 150(1):1-5. PubMed ID: 3136733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.