BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6442163)

  • 21. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase.
    Zheng YJ; Bruice TC
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11881-6. PubMed ID: 9342331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion.
    Richardson IW; Anthony C
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):709-15. PubMed ID: 1332681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The enzymatic reaction-induced configuration change of the prosthetic group PQQ of methanol dehydrogenase.
    Li J; Gan JH; Mathews FS; Xia ZX
    Biochem Biophys Res Commun; 2011 Mar; 406(4):621-6. PubMed ID: 21356200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the second prosthetic group in methanol dehydrogenase from hyphomicrobium X.
    Verwiel PE; Frank J; Verwiel EJ
    Eur J Biochem; 1981 Aug; 118(2):395-9. PubMed ID: 7026242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the phenazine methosulphate-tetrazolium capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. II. A novel hypothesis for the mode of action of PMS and a study of the properties of reduced PMS.
    Raap AK; Van Duijn P
    Histochem J; 1983 Sep; 15(9):881-93. PubMed ID: 6629853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic isotope effects and ligand binding in PQQ-dependent methanol dehydrogenase.
    Hothi P; Sutcliffe MJ; Scrutton NS
    Biochem J; 2005 May; 388(Pt 1):123-33. PubMed ID: 15617516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial oxidation of methane and methanol: crystallization of methanol dehydrogenase and properties of holo- and apomethanol dehydrogenase from Methylomonas methanica.
    Patel RN; Hou CT; Felix A
    J Bacteriol; 1978 Feb; 133(2):641-9. PubMed ID: 415046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The reaction of choline dehydrogenase with some electron acceptors.
    Barrett MC; Dawson AP
    Biochem J; 1975 Dec; 151(3):677-83. PubMed ID: 1218095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and properties of the methanol dehydrogenase from Methylophilus methylotrophus.
    Ghosh R; Quayle JR
    Biochem J; 1981 Oct; 199(1):245-50. PubMed ID: 6802134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The preferred reaction path for the oxidation of methanol by PQQ-containing methanol dehydrogenase: addition-elimination versus hydride-transfer mechanism.
    Leopoldini M; Russo N; Toscano M
    Chemistry; 2007; 13(7):2109-17. PubMed ID: 17149777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Kinetic and structural characteristics of succinate dehydrogenase components reacting with natural and artificial electron acceptors].
    Vinogradov AD; Gavrikova EV; Goloveshkina VG
    Biokhimiia; 1976; 41(7):1155-68. PubMed ID: 999975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic and spectral studies on the redox forms of methanol dehydrogenase from Hyphomicrobium X.
    Frank J; Dijkstra M; Duine JA; Balny C
    Eur J Biochem; 1988 Jun; 174(2):331-8. PubMed ID: 3289922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2, 7,9-tricarboxylic acid).
    Itoh S; Kawakami H; Fukuzumi S
    Biochemistry; 1998 May; 37(18):6562-71. PubMed ID: 9572874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.
    Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC
    J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Replacement of methoxatin by 4,7-phenanthroline-5,6-dione and the inability of other phenanthroline quinones, as well as 7,9-di-decarboxy methoxatin, to serve as cofactors for the methoxatin-requiring glucose dehydrogenase of Acinetobacter calcoaceticus.
    Conlin M; Forrest HS; Bruice TC
    Biochem Biophys Res Commun; 1985 Sep; 131(2):564-6. PubMed ID: 4052066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methanol dehydrogenase of Methylomonas J: purification, crystallization, and some properties.
    Ohta S; Fujita T; Tobari J
    J Biochem; 1981 Jul; 90(1):205-13. PubMed ID: 6270077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550.
    Mennenga B; Kay CW; Görisch H
    Arch Microbiol; 2009 Apr; 191(4):361-7. PubMed ID: 19224199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An electron-nuclear double-resonance study of methanol dehydrogenase and its coenzyme radical.
    Duine JA; Frank J; De Beer R
    Arch Biochem Biophys; 1984 Sep; 233(2):708-11. PubMed ID: 6091555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Negative cooperativity in the steady-state kinetics of sugar oxidation by soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus.
    Olsthoorn AJ; Otsuki T; Duine JA
    Eur J Biochem; 1998 Jul; 255(1):255-61. PubMed ID: 9692926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.