These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 6443884)

  • 21. Amine inversion in proteins. A 13C-NMR study of proton exchange and nitrogen inversion rates in N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine,N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine methyl ester, and reductively methylated concanavalin A.
    Goux WJ; Teherani J; Sherry AD
    Biophys Chem; 1984 Jun; 19(4):363-73. PubMed ID: 6430360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Formation of lysine tyrosylquinone (LTQ) is a self-processing reaction. Expression and characterization of a Drosophila lysyl oxidase.
    Bollinger JA; Brown DE; Dooley DM
    Biochemistry; 2005 Sep; 44(35):11708-14. PubMed ID: 16128571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein.
    Van Gilst MR; von Hippel PH
    J Mol Biol; 1997 Nov; 274(2):160-73. PubMed ID: 9398524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of the ribosomal protein S1 in polyuridylate binding by reductive methylation of the lysyl-ammonium groups.
    Khanh NQ; Lipecky R; Gassen HG
    Biochim Biophys Acta; 1978 Dec; 521(2):476-83. PubMed ID: 32905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methyl motions in 13C-methylated concanavalin as studied by 13C magnetic resonance relaxation techniques.
    Sherry AD; Keepers J; James TL; Teherani J
    Biochemistry; 1984 Jul; 23(14):3181-5. PubMed ID: 6432038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the Fc fragment from a human IgG1 and its CH2, pFc', and tFc' subfragments. A study using reductive methylation and 13C NMR.
    Jentoft JE; Rayford R
    Biochemistry; 1989 Apr; 28(8):3250-7. PubMed ID: 2500969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 13C-methylation study of glycophorin A intact erythrocytes by 13C-NMR spectroscopy.
    Carter RD; Lannom HK; Dill K
    Biochim Biophys Acta; 1985 Jun; 845(3):396-402. PubMed ID: 4005298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 13C-NMR spectral study of reductively [13C]methylated glycophorin B.
    Carter RD; Brooks JR; Dill K
    Biochim Biophys Acta; 1984 Nov; 790(3):285-7. PubMed ID: 6487642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of glycated proteins by 13C NMR spectroscopy. Identification of specific sites of protein modification by glucose.
    Neglia CI; Cohen HJ; Garber AR; Thorpe SR; Baynes JW
    J Biol Chem; 1985 May; 260(9):5406-10. PubMed ID: 2985592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical studies of 13C-methylated concanavalin A. pH- and Co2+-induced nuclear magnetic resonance shifts.
    Sherry AD; Teherani J
    J Biol Chem; 1983 Jul; 258(14):8663-9. PubMed ID: 6863304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of reductive alkylation of the epsilon-amino group of lysyl redsidues of casein on its nutritive value in rats.
    Lee HS; Sen LC; Clifford AJ; Whitaker JR; Feeney RE
    J Nutr; 1978 Apr; 108(4):687-97. PubMed ID: 564944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 13C-nuclear magnetic resonance study of glycophorins AM and AN modified with various pyrylium salts.
    Dill K; Hu SH; Sutharchanadevi M; Katritzky AR
    J Protein Chem; 1988 Aug; 7(4):341-8. PubMed ID: 3255370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of basic amino acids in the activity of a nucleic acid helix-destabilizing protein.
    Karpel RL; Merkler DJ; Flowers BK; Delahunty MD
    Biochim Biophys Acta; 1981 Jun; 654(1):42-51. PubMed ID: 6268166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of colorimetric assays for analyzing reductively methylated proteins: Biases and mechanistic insights.
    Brady PN; Macnaughtan MA
    Anal Biochem; 2015 Dec; 491():43-51. PubMed ID: 26342307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of protein-ligand interactions by NMR using reductive methylation of lysine residues.
    Abraham SJ; Hoheisel S; Gaponenko V
    J Biomol NMR; 2008 Oct; 42(2):143-8. PubMed ID: 18819009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of methods to assign the nuclear magnetic resonance peaks of reductively methylated proteins.
    Roberson KJ; Macnaughtan MA
    Anal Biochem; 2014 Dec; 466():76-82. PubMed ID: 25175010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tritium labeling of proteins to high specific radioactivity by reduction methylation.
    Tack BF; Dean J; Eilat D; Lorenz PE; Schechter AN
    J Biol Chem; 1980 Sep; 255(18):8842-7. PubMed ID: 6773951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of the pH memory effect in lyophilized proteins to achieve preferential methylation of alpha-amino groups.
    Vakos HT; Kaplan H; Black B; Dawson B; Hefford MA
    J Protein Chem; 2000 Apr; 19(3):231-7. PubMed ID: 10981816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1-Deoxyglycitolation of protein amino groups and their regeneration by periodate oxidation.
    Wong WS; Kristjansson MM; Osuga DT; Feeney RE
    Int J Pept Protein Res; 1985 Jul; 26(1):55-62. PubMed ID: 2997056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutritional characteristics of a neoglycoprotein, casein modified covalently by glucose.
    Furuichi Y; Oogida T; Mitsui C; Matsuno M; Takahashi T
    J Nutr Biochem; 1990 Apr; 1(4):196-9. PubMed ID: 15539204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.