These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6444219)

  • 1. Ca2+-regulated release of an ATPase inhibitor protein from submitochondrial particles derived from skeletal muscles of the rat.
    Yamada EW; Shiffman FH; Huzel NJ
    J Biol Chem; 1980 Jan; 255(1):267-73. PubMed ID: 6444219
    [No Abstract]   [Full Text] [Related]  

  • 2. Reversal by uncouplers of oxidative phosphorylation and by Ca2+ of the inhibition of mitochondrial ATPase activity by the ATPase inhibitor protein of rat skeletal muscle.
    Yamada EW; Huzel NJ; Dickison JC
    J Biol Chem; 1981 Oct; 256(19):10203-7. PubMed ID: 6456266
    [No Abstract]   [Full Text] [Related]  

  • 3. An inhibitory high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitochondrial particles.
    Fitin AF; Vasilyeva EA; Vinogradov AD
    Biochem Biophys Res Commun; 1979 Jan; 86(2):434-9. PubMed ID: 154889
    [No Abstract]   [Full Text] [Related]  

  • 4. Interaction of complex V and F1-ATPase with [14C]phenylglyoxal.
    Frigeri L; Galante YM; Hatefi Y
    J Biol Chem; 1978 Dec; 253(24):8935-40. PubMed ID: 152760
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of some lipophilic substances on mitochondrial ATPase.
    Casali C; Degli Esposti M; Bertoli E; Parenti-Castelli G; Lenaz G
    Boll Soc Ital Biol Sper; 1980 May; 56(10):996-1001. PubMed ID: 6449955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tightly-bound ATP and ADP in reconstituted submitochondrial particles.
    Leimgruber RM; Senior AE
    Biochem Biophys Res Commun; 1978 Aug; 83(3):837-42. PubMed ID: 152109
    [No Abstract]   [Full Text] [Related]  

  • 7. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle.
    Rouslin W
    J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenylylimidodiphosphate release from the active site of submitochondrial particles ATPase.
    Chernyak BC; Kozlov IA
    FEBS Lett; 1979 Aug; 104(2):215-9. PubMed ID: 39003
    [No Abstract]   [Full Text] [Related]  

  • 9. Lipid protein interactions in mitochondria. VII. A comparison of the effects of lipid removal and lipid perturbation of the kinetic properties of mitochondrial ATPase.
    Parenti-Castelli G; Sechi AM; Landi L; Cabrini L; Mascarello S; Lenaz G
    Biochim Biophys Acta; 1979 Jul; 547(1):161-9. PubMed ID: 157158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titration of the binding sites for the oligomycin-sensitivity conferring protein in beef heart submitochondrial particles.
    Dupuis A; Satre M; Vignais PV
    FEBS Lett; 1983 May; 156(1):99-102. PubMed ID: 6189744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the interaction of mitochondrial ATPase with submitochondrial membranes.
    Silvestrini MG; Sechi AM; Parenti-Castelli G; Masotti L; Lenaz G
    Ital J Biochem; 1972; 21(5):265-74. PubMed ID: 4273641
    [No Abstract]   [Full Text] [Related]  

  • 12. A Ca2+-binding lipoprotein from submitochondrial particles of rat skeletal muscle or bovine heart.
    Yamada EW; Huzel NJ; Burgess JW
    J Biol Chem; 1982 Feb; 257(4):2087-91. PubMed ID: 6460034
    [No Abstract]   [Full Text] [Related]  

  • 13. [Effect of anions on the ATPase activity of submitochondrial particles].
    Ivashchenko AT; Uteulin KR
    Biokhimiia; 1983 Jan; 48(1):11-6. PubMed ID: 6219716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometry of adenosine triphosphate-driven proton translocation in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1973 Aug; 248(15):5395-402. PubMed ID: 4358615
    [No Abstract]   [Full Text] [Related]  

  • 15. The mitochondrial adenosine triphosphatase of Acanthamoeba castellanii. Partial characterization and changes in activity during exponential growth.
    Edwards SW; Evans JB; Lloyd D
    Comp Biochem Physiol B; 1982; 71(3):495-500. PubMed ID: 6121661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATPase inhibitor protein in oxidative phosphorylation. The rate-limiting factor to phosphorylation in submitochondrial particles.
    Harris DA; von Tscharner V; Radda GK
    Biochim Biophys Acta; 1979 Oct; 548(1):72-84. PubMed ID: 226134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. F1-ATPase from different submitochondrial particles.
    Bruni A; Pitotti A; Palatini P; Dabbeni-Sala F; Bigon E
    Biochim Biophys Acta; 1979 Mar; 545(3):404-14. PubMed ID: 154927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Esterase activity of the mitochondria oligomycin-sensitive ATPase complex].
    Iaguzhinskiĭ LS; Gudz' TI; Verkhovskiĭ AB
    Biokhimiia; 1978 Nov; 43(11):2058-63. PubMed ID: 153769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective disaggregation of the H+-translocating ATPase. Isolation of two discrete complexes of the rutamycin-insensitive ATPase differing in mitochondrial membrane-binding properties.
    Fisher RJ; Liang AM; Sundstrom GC
    J Biol Chem; 1981 Jan; 256(2):707-15. PubMed ID: 6450207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organotin-flavone complexes; a new class of potential biocidal compounds.
    Griffiths DE
    Biochem Soc Trans; 1994 Feb; 22(1):72S. PubMed ID: 8206303
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.