These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6444299)

  • 1. Calcium transport in human inside-out erythrocyte vesicles.
    Mollman JE; Pleasure DE
    J Biol Chem; 1980 Jan; 255(2):569-74. PubMed ID: 6444299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. I. Regulation of the Ca2+ pump by calmodulin.
    Waisman DM; Gimble JM; Goodman DB; Rasmussen H
    J Biol Chem; 1981 Jan; 256(1):409-14. PubMed ID: 6108954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transport by pigeon erythrocyte membrane vesicles.
    Ting A; Lee JW; Vidaver GA
    Biochim Biophys Acta; 1979 Aug; 555(2):239-48. PubMed ID: 476104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stoichiometry of the Ca2+ pump in human erythrocyte vesicles: modulation by Ca2+, Mg2+ and calmodulin.
    Akyempon CK; Roufogalis BD
    Cell Calcium; 1982 Mar; 3(1):1-17. PubMed ID: 6125268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the red cell calcium pump regulated by ATP?
    Mualem S; Karlish SJ
    Nature; 1979 Jan; 277(5693):238-40. PubMed ID: 162149
    [No Abstract]   [Full Text] [Related]  

  • 6. Active calcium transport in human red cells.
    Sarkadi B
    Biochim Biophys Acta; 1980 Sep; 604(2):159-90. PubMed ID: 6252968
    [No Abstract]   [Full Text] [Related]  

  • 7. Vanadate inhibition of active Ca2+ transport across human red cell membranes.
    Rossi JP; Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1981 Nov; 648(2):145-50. PubMed ID: 6458333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-stimulated, Mg2+-dependent ATPase activity in neutrophil plasma membrane vesicles. Coupling to Ca2+ transport.
    Ochs DL; Reed PW
    J Biol Chem; 1984 Jan; 259(1):102-6. PubMed ID: 6142882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ transport activities of inside-out vesicles prepared from density-separated erythrocytes from rat and human.
    Seidler NW; Swislocki NI
    Mol Cell Biochem; 1991 Jul; 105(2):159-69. PubMed ID: 1833624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin regulation of Ca2+ transport in human erythrocytes.
    Larsen FL; Katz S; Roufogalis BD
    Biochem J; 1981 Nov; 200(2):185-91. PubMed ID: 6122443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the substrate specificity of the red cell calcium pump.
    Enyedi A; Sarkadi B; Gárdos G
    Biochim Biophys Acta; 1982 Apr; 687(1):109-12. PubMed ID: 6978736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins.
    Maretzki D; Klatt D; Reimann B; Rapoport S
    Acta Biol Med Ger; 1981; 40(4-5):479-86. PubMed ID: 6118991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. V. Chlortetracycline fluorescence.
    Gimble JM; Gustin M; Goodman DB; Rasmussen H
    Biochim Biophys Acta; 1982 Mar; 685(3):253-9. PubMed ID: 6802179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. III. Stimulation of the Ca2+ pump by anions.
    Waisman DM; Gimble JM; Goodman DB; Rasmussen H
    J Biol Chem; 1981 Jan; 256(1):420-4. PubMed ID: 6108956
    [No Abstract]   [Full Text] [Related]  

  • 15. Net ATP synthesis by running the red cell calcium pump backwards.
    Wüthrich A; Schatzmann HJ; Romero P
    Experientia; 1979 Dec; 35(12):1589-90. PubMed ID: 391586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on glutathione transport utilizing inside-out vesicles prepared from human erythrocytes.
    Kondo T; Dale GL; Beutler E
    Biochim Biophys Acta; 1981 Jul; 645(1):132-6. PubMed ID: 6455160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of monovalent ions on the activity of the (Ca2+ + Mg2+)-ATPase and Ca2+ -transport of human red blood cells.
    Wierichs R; Bader H
    Biochim Biophys Acta; 1980 Feb; 596(2):325-8. PubMed ID: 6101964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of Ca2+/Mg2+ ATPase activator protein and Ca2+ with human erythrocyte membranes.
    Hanahan DJ; Taverna RD; Flynn DD; Ekholm JE
    Biochem Biophys Res Commun; 1978 Oct; 84(4):1009-15. PubMed ID: 153141
    [No Abstract]   [Full Text] [Related]  

  • 19. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonism of calmodulin by local anesthetics. Inhibition of calmodulin-stimulated calcium transport of erythrocyte inside-out membrane vesicles.
    Volpi M; Sha'afi RI; Feinstein MB
    Mol Pharmacol; 1981 Sep; 20(2):363-70. PubMed ID: 6457977
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.