BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6444415)

  • 1. Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles.
    Toll L; Howard BD
    J Biol Chem; 1980 Mar; 255(5):1787-9. PubMed ID: 6444415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line.
    Rebois RV; Reynolds EE; Toll L; Howard BD
    Biochemistry; 1980 Mar; 19(6):1240-8. PubMed ID: 7370231
    [No Abstract]   [Full Text] [Related]  

  • 3. Delta pH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses.
    Russell JT
    J Biol Chem; 1984 Aug; 259(15):9496-507. PubMed ID: 6146615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport of biogenic amines in chromaffin granule membrane vesicles.
    Schuldiner S; Maron R; Kanner BI
    Monogr Neural Sci; 1980; 7():117-28. PubMed ID: 6453280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis.
    Tsai KJ; Yoon KP; Lynn AR
    J Bacteriol; 1992 Jan; 174(1):116-21. PubMed ID: 1530844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178
    [No Abstract]   [Full Text] [Related]  

  • 8. ATP synthesis driven by a protonmotive force in Streptococcus lactis.
    Maloney PC; Wilson TH
    J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choline and acetylcholine metabolism in PC12 secretory cells.
    Melega WP; Howard BD
    Biochemistry; 1981 Jul; 20(15):4477-83. PubMed ID: 7284337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles.
    Eytan GD; Carlenor E; Rydström J
    J Biol Chem; 1990 Aug; 265(22):12949-54. PubMed ID: 2142942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of denitrification by uncouplers of oxidative phosphorylation.
    Walter B; Sidransky E; Kristjansson JK; Hollocher TC
    Biochemistry; 1978 Jul; 17(15):3039-45. PubMed ID: 100132
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy coupling in lysolecithin-treated submitochondrial particles.
    Komai H; Hunter DR; Southard JH; Haworth RA; Green DE
    Biochem Biophys Res Commun; 1976 Apr; 69(3):695-704. PubMed ID: 5087
    [No Abstract]   [Full Text] [Related]  

  • 13. Reconstitution of ATP-dependent calcium transport from streptococci.
    Ambudkar SV; Lynn AR; Maloney PC; Rosen BP
    J Biol Chem; 1986 Nov; 261(33):15596-600. PubMed ID: 3096992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity.
    Leblanc G; Le Grimellec C
    Biochim Biophys Acta; 1979 Jun; 554(1):168-79. PubMed ID: 36912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles.
    Yoshida M; Sone N; Hirata H; Kagawa Y
    Biochem Biophys Res Commun; 1975 Dec; 67(4):1295-300. PubMed ID: 1031
    [No Abstract]   [Full Text] [Related]  

  • 16. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle.
    Rouslin W
    J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Bacteriol; 1976 Jul; 127(1):154-61. PubMed ID: 6430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstituted mitochondrial oligomycin-sensitive ATPase (F0F1) with intermediate Pi in equilibrium HOH exchange but no Pi in equilibrium ATP exchange activity.
    Ernster L; Carlsson C; Boyer PD
    FEBS Lett; 1977 Dec; 84(2):283-6. PubMed ID: 145953
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes.
    Malpartida F; Serrano R
    J Biol Chem; 1981 May; 256(9):4175-7. PubMed ID: 6163779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of active calcium transport in vesicles of an Mg2+-ATPase mutant of Escherichia coli by wild-type Mg2+-ATPase.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1975 Apr; 63(4):832-8. PubMed ID: 124173
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.