These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6444504)

  • 1. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus.
    Dreyfuss MS; Chipley JR
    Appl Environ Microbiol; 1980 Jan; 39(1):13-6. PubMed ID: 6444504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat transfer analysis of staphylococcus aureus on stainless steel with microwave radiation.
    Yeo CB; Watson IA; Stewart-Tull DE; Koh VH
    J Appl Microbiol; 1999 Sep; 87(3):396-401. PubMed ID: 10540242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of microwaves on survival of some bacterial strains.
    Atmaca S; Akdag Z; Dasdag S; Celik S
    Acta Microbiol Immunol Hung; 1996; 43(4):371-8. PubMed ID: 9147728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study on Injury and Recovery of Staphylococcus aureus using Microwaves and Conventional Heating.
    Khalil H; Villota R
    J Food Prot; 1988 Mar; 51(3):181-186. PubMed ID: 30978885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical models for conventional and microwave thermal deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):42-8. PubMed ID: 17531148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Staphylococcus aureus cytoplasmic membrane proteins by isoelectric focusing.
    Kubak BM; Yotis WW
    Biochim Biophys Acta; 1981 Dec; 649(3):642-50. PubMed ID: 6459126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain enzyme histochemistry following stabilization by microwave irradiation.
    Marani E; Bolhuis P; Boon ME
    Histochem J; 1988; 20(6-7):397-404. PubMed ID: 3065307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of sensory, microbiological, and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage.
    Clare DA; Bang WS; Cartwright G; Drake MA; Coronel P; Simunovic J
    J Dairy Sci; 2005 Dec; 88(12):4172-82. PubMed ID: 16291608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of high frequency treatment on several microorganisms important to food health].
    Rosenberg U; Sinell HJ
    Zentralbl Hyg Umweltmed; 1989 Jun; 188(3-4):271-83. PubMed ID: 2667555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival of enterobacteria in liquid cultures during microwave radiation and conventional heating.
    Papadopoulou C; Demetriou D; Panagiou A; Levidiotou S; Gessouli H; Ionnides K; Antoniades G
    Microbiol Res; 1995 Sep; 150(3):305-9. PubMed ID: 12099299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of microwave and ohmic heating for pasteurization of cantaloupe juice: microbial inactivation and chemical properties.
    Hashemi SMB; Gholamhosseinpour A; Niakousari M
    J Sci Food Agric; 2019 Jul; 99(9):4276-4286. PubMed ID: 30815876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial survival and thermal responses of beef loaf after microwave processing.
    Lin W; Sawyer C
    J Microw Power Electromagn Energy; 1988; 23(3):183-94. PubMed ID: 3069993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Two-step exposure of biological objects to infrared laser and microwave radiation].
    Kol'tsov IuV; Korolev VN; Kusakin SA
    Biofizika; 1999; 44(2):378-81. PubMed ID: 10418688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave radiation effects on the thermally driven oxidase of erythrocytes.
    Kiel JL; Erwin DN
    Int J Hyperthermia; 1986; 2(2):201-12. PubMed ID: 3794416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry.
    Wang H; Tu ZC; Liu GX; Liu CM; Huang XQ; Xiao H
    Food Chem; 2013 Nov; 141(2):985-91. PubMed ID: 23790877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model of manganese ion catalyzed microwave deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):49-54. PubMed ID: 17531149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of interaction, structure, and cell proliferation of α-lactalbumin-safflower yellow complex induced by microwave heating or conventional heating.
    Li T; Li J; Huang Y; Qayum A; Jiang Z; Liu Z
    J Sci Food Agric; 2023 Mar; 103(4):1846-1855. PubMed ID: 36347624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Microwave Sublethal Heating on the Ribonucleic Acids of Staphylococcus aureus.
    Khalil H; Villota R
    J Food Prot; 1989 Aug; 52(8):544-548. PubMed ID: 31003330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different effects of microwave energy and conventional heat on the activity of a thermophilic beta-galactosidase from Bacillus acidocaldarius.
    La Cara F; Scarfi MR; D'Auria S; Massa R; d'Ambrosio G; Franceschetti G; Rossi M; De Rosa M
    Bioelectromagnetics; 1999; 20(3):172-6. PubMed ID: 10194559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effect of microwaves and boiling on the denaturation of DNA.
    Stroop WG; Schaefer DC
    Anal Biochem; 1989 Nov; 182(2):222-5. PubMed ID: 2610338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.