These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6444522)

  • 1. Electrical response of beef-heart submitochondrial particles bound to phospholipid-impregnated millipore filters during ATP hydrolysis.
    Pfister C; Pougeois R
    Biochim Biophys Acta; 1980 Feb; 589(2):201-16. PubMed ID: 6444522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential generation by submitochondrial particles associated with a lipid-impregnated filter.
    Konstantinov A; Skulachev VP; Smirnova IA
    FEBS Lett; 1980 Jun; 114(2):302-6. PubMed ID: 7190100
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of the membrane potential on the rate of ATP hydrolysis in submitochondrial particles].
    Gladysheva TB; Kozlov IA; Khodzhaev EIu; Cherniak BV
    Dokl Akad Nauk SSSR; 1984; 276(4):980-3. PubMed ID: 6236064
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of reducing agents and uncouplers on the electrical potential generated by mitochondrial ATPase activity.
    Encío I; de Miguel C; López-Moratalla N; Santiago E
    Rev Esp Fisiol; 1989 Dec; 45(4):395-405. PubMed ID: 2561021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Direct electric measurement of the functioning of adenosine triphosphatase of submitochondrial particles of beef heart].
    Pfister C; Pougeois R
    C R Acad Hebd Seances Acad Sci D; 1978 Sep; 287(4):341-3. PubMed ID: 152675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titration of the binding sites for the oligomycin-sensitivity conferring protein in beef heart submitochondrial particles.
    Dupuis A; Satre M; Vignais PV
    FEBS Lett; 1983 May; 156(1):99-102. PubMed ID: 6189744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.
    Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ
    Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the electrochemical proton gradient in submitochondrial particles.
    Berry EA; Hinkle PC
    J Biol Chem; 1983 Feb; 258(3):1474-86. PubMed ID: 6296098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical aspects of the mechanism of action of antiarrhythmic drugs on mitochondria. VII. Effect on energy-linked reactions and on membrane potential.
    Klüppel ML; Borba HR; Silveira O; Lopes LC; Campello Ade P
    Cell Biochem Funct; 1986 Oct; 4(4):289-96. PubMed ID: 2878737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adenine nucleotide translocase modulates oligomycin-induced quenching of pyranine fluorescence in submitochondrial particles.
    Ziegler M; Penefsky HS
    J Biol Chem; 1993 Dec; 268(34):25320-8. PubMed ID: 8244963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid protein interactions in mitochondria. VII. A comparison of the effects of lipid removal and lipid perturbation of the kinetic properties of mitochondrial ATPase.
    Parenti-Castelli G; Sechi AM; Landi L; Cabrini L; Mascarello S; Lenaz G
    Biochim Biophys Acta; 1979 Jul; 547(1):161-9. PubMed ID: 157158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase.
    Solaini G; Tadolini B
    Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of membrane potential on the redox state of cytochrome b561 in antimycin-inhibited submitochondrial particles.
    Gopher A; Gutman M
    J Bioenerg Biomembr; 1980 Dec; 12(5-6):349-67. PubMed ID: 7263619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inhibitory high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitochondrial particles.
    Fitin AF; Vasilyeva EA; Vinogradov AD
    Biochem Biophys Res Commun; 1979 Jan; 86(2):434-9. PubMed ID: 154889
    [No Abstract]   [Full Text] [Related]  

  • 15. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase.
    Deléage G; Penin F; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles.
    Lowe PN; Beechey RB
    Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tightly-bound ATP and ADP in reconstituted submitochondrial particles.
    Leimgruber RM; Senior AE
    Biochem Biophys Res Commun; 1978 Aug; 83(3):837-42. PubMed ID: 152109
    [No Abstract]   [Full Text] [Related]  

  • 18. Modulation of mitochondrial F0F1 catalysis by boundary and bulk phase phospholipids.
    Dabbeni-Sala F; Vázquez-Laslop N; Fachinetti A; Devars S; Dreyfus G
    Biochem Biophys Res Commun; 1989 Feb; 158(3):1013-20. PubMed ID: 2537628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the ATPase complex from beef-heart mitochondria. I. Isolation and characterization of an oligomycin-sensitive and an olgiomycin-insensitive ATPase complex from beef-heart mitochondria.
    Berden JA; Voorn-Brouwer MM
    Biochim Biophys Acta; 1978 Mar; 501(3):424-39. PubMed ID: 147105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles.
    Klein G; Vignais PV
    J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.