These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6444524)

  • 1. The pre-steady state and steady-state kinetics of the ATPase activity of mitochondrial F1.
    Roveri OA; Muller JL; Wilms J; Slater EC
    Biochim Biophys Acta; 1980 Feb; 589(2):241-55. PubMed ID: 6444524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form.
    Bronnikov GE; Samoylova EV
    Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beef heart mitochondrial adenosine triphosphatase-catalyzed formation of a transition state analog in ATP synthesis.
    Bossard MJ; Vik TA; Schuster SM
    J Biol Chem; 1980 Jun; 255(11):5342-6. PubMed ID: 6445363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of ADP to beef-heart mitochondrial ATPase (F1).
    Wielders JP; Slater EC; Muller JL
    Biochim Biophys Acta; 1980 Feb; 589(2):231-40. PubMed ID: 6444523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-steady-state kinetics of beef heart mitochondrial ATPase.
    Clark DD; Daggett SG; Schuster SM
    Arch Biochem Biophys; 1984 Sep; 233(2):378-92. PubMed ID: 6237608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase.
    Klein G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Kinetics of Mg2+-dependent CF1-ATPase in the presence of stimulators].
    Mal'ian AN
    Biokhimiia; 1982 Apr; 47(4):540-5. PubMed ID: 6211195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenine nucleotide binding sites on beef heart F1-ATPase. Specificity of cooperative interactions between catalytic sites.
    Nalin CM; Cross RL
    J Biol Chem; 1982 Jul; 257(14):8055-60. PubMed ID: 6211449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abolition of anion-activation of mitochondrial F1-ATPase by the partial ADP-induced hysteretic inhibition.
    Baubichon H; Di Pietro A; Godinot C; Gautheron DC
    FEBS Lett; 1982 Jan; 137(2):261-4. PubMed ID: 6460647
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of two states of F1-ATPase by nucleotide analogs.
    Schäfer G
    FEBS Lett; 1982 Mar; 139(2):271-5. PubMed ID: 6210575
    [No Abstract]   [Full Text] [Related]  

  • 13. Mg2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1.
    Minkov IB; Fitin AF; Vasilyeva EA; Vinogradov AD
    Biochem Biophys Res Commun; 1979 Aug; 89(4):1300-6. PubMed ID: 159048
    [No Abstract]   [Full Text] [Related]  

  • 14. The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphatase.
    Grubmeyer C; Penefsky HS
    J Biol Chem; 1981 Apr; 256(8):3718-27. PubMed ID: 6452454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP.
    Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A
    Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of soluble mitochondrial ATPase by the reacting enzyme sedimentation method.
    Chernyak VY; Kozhanova ZE; Chernyak BV; Kozlov IA
    Eur J Biochem; 1979 Aug; 98(2):585-9. PubMed ID: 158527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The number and localisation of adenine nucleotide-binding sites in beef-heart mitochondrial ATPase (F1) determined by photolabelling with 8-azido-ATP and 8-azido-ADP.
    Wagenvoord RJ; Kemp A; Slater EC
    Biochim Biophys Acta; 1980 Dec; 593(2):204-11. PubMed ID: 6453610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and thermodynamic properties of beef heart mitochondrial ATPase: effect of co-solvent systems.
    Clark DD; Schuster SM
    J Bioenerg Biomembr; 1980 Dec; 12(5-6):369-78. PubMed ID: 6455417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.