These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 6444870)

  • 1. [Role of Fe-Mo-cofactor in the formation of the catalytically active ATPase center of nitrogenase].
    Mitsova IZ; Kondrat'eva TA; Gvozdev RI
    Dokl Akad Nauk SSSR; 1980; 251(2):494-7. PubMed ID: 6444870
    [No Abstract]   [Full Text] [Related]  

  • 2. [Topography of the nitrogenase ATPase centre studied by fluorescence labeling].
    Alfimova EIa; Syrtsova LA; Pisarskaia TN; Likhtenshteĭn GI
    Mol Biol; 1974; 8(5):676-85. PubMed ID: 4283378
    [No Abstract]   [Full Text] [Related]  

  • 3. [Study of the topography of the nitrogenase active center by the electron microscopy method with the use of the electron density labels].
    Levchenko LA; Raevskiĭ AV; Likhtenshteĭn GI; Sadkov AP; Pivovarova TS
    Biokhimiia; 1977 Oct; 42(10):1755-64. PubMed ID: 922065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe/S and Fe/Mo/S clusters as speculative models for the metal centers in uncommon Fe/S proteins and the Fe/Mo protein of the nitrogenases.
    Coucouvanis D
    Adv Inorg Biochem; 1994; 9():75-122. PubMed ID: 8140951
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and P(n)-type clusters topologically related to the nitrogenase P-cluster.
    Zhang Y; Holm RH
    Inorg Chem; 2004 Jan; 43(2):674-82. PubMed ID: 14731029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Localization of the FeMo-cofactor in the active center of nitrogenase].
    Levchenko LA; Sadkov AP; Raevskiĭ AV; Pivovarova TS; Likhtenshteĭn GI
    Dokl Akad Nauk SSSR; 1984; 277(4):1003-5. PubMed ID: 6593199
    [No Abstract]   [Full Text] [Related]  

  • 9. The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by Fe K-edge EXAFS and 57Fe Mössbauer spectroscopy.
    Krahn E; Weiss R; Kröckel M; Groppe J; Henkel G; Cramer P; Trautwein X; Schneider K; Müller A
    J Biol Inorg Chem; 2002 Jan; 7(1-2):37-45. PubMed ID: 11862539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene.
    Durrant MC
    Biochemistry; 2004 May; 43(20):6030-42. PubMed ID: 15147187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The study of the chemical composition of nitrogenase Fe-Mo-cofactor by a new fluorimetric method of thiocompound analysis].
    Syrtsova LA; Popko EV; Likhtenshteĭn GI; Druzhinin SIu
    Biokhimiia; 1983 Jul; 48(7):1195-202. PubMed ID: 6577914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mo K- and L-edge X-ray absorption spectroscopic study of the ADP.AlF4--stabilized nitrogenase complex: comparison with MoFe protein in solution and single crystal.
    Corbett MC; Tezcan FA; Einsle O; Walton MY; Rees DC; Latimer MJ; Hedman B; Hodgson KO
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):28-34. PubMed ID: 15616362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase.
    Kästner J; Hemmen S; Blöchl PE
    J Chem Phys; 2005 Aug; 123(7):074306. PubMed ID: 16229569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.
    Siemann S; Schneider K; Oley M; Müller A
    Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate interactions with nitrogenase: Fe versus Mo.
    Seefeldt LC; Dance IG; Dean DR
    Biochemistry; 2004 Feb; 43(6):1401-9. PubMed ID: 14769015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Estimation of the distance between ATPase and substrate-binding sites in nitrogenase by an NMR method].
    Syrtsova LA; Likhtenshteĭn GI; Pisarskaia TN; Berdinskiĭ VL; Lezina VP; Stepaniants AU
    Mol Biol; 1974; 8(6):824-31. PubMed ID: 4283380
    [No Abstract]   [Full Text] [Related]  

  • 18. [Role of adenosine triphosphatase on nitrogenase function].
    Likhtenshtein GI; Panteleeva NS; Skvortsevich EG; Syrtsova LA; Uzenskaia AM
    Mol Biol (Mosk); 1980; 14(1):147-56. PubMed ID: 6453279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum.
    Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC
    J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.