BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6444949)

  • 1. Reversible modification of arginine residues in neocarzinostatin. Isolation of a biologically active 89-residue fragment from the tryptic hydrolysate.
    Samy TS; Kappen LS; Goldberg IH
    J Biol Chem; 1980 Apr; 255(8):3420-6. PubMed ID: 6444949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of functional arginine residues in ribonuclease A and lysozyme.
    Patthy L; Smith EL
    J Biol Chem; 1975 Jan; 250(2):565-9. PubMed ID: 1112778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues.
    Patthy L; Smith EL
    J Biol Chem; 1975 Jan; 250(2):557-64. PubMed ID: 234432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,2-Cyclohexanedione modification of arginine residues in egg-white riboflavin-binding protein.
    Kozik A; Guevara I; Zak Z
    Int J Biochem; 1988; 20(7):707-11. PubMed ID: 3181600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the antitumor protein neocarzinostatin. Purification, amino acid composition, disulfide reduction, and isolation and composition of tryptic peptides.
    Maeda H; Glaser CB; Czombos J; Meienhoffer J
    Arch Biochem Biophys; 1974 Oct; 164(2):369-78. PubMed ID: 4282218
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of the C-1-phosphate-binding arginine residue of rabbit-muscle aldolase. Isolation of 1,2-cyclohexanedione-labeled peptide by chemisorption chromatography.
    Patthy L; Váradi A; Thész J; Kovács K
    Eur J Biochem; 1979 Sep; 99(2):309-13. PubMed ID: 499203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of arginines in bovine growth hormone.
    Wolfenstein-Todel C; Santomé JA
    Int J Pept Protein Res; 1983 Nov; 22(5):611-6. PubMed ID: 6317584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The generalization of pre-neocarzinostatin and antagonism of neocarzinostatin-induced DNA scission in vitro.
    Jung G; Lewis RS; Köhnlein W
    Biochim Biophys Acta; 1980 Jun; 608(1):147-53. PubMed ID: 6446322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of arginine residues in human growth hormone by 1,2-cyclohexanedione: effects on the binding capacity to lactogenic and somatogenic receptors.
    Atlasovich FM; Caridad JJ; Nowicki C; Santomé JA; Wolfenstein-Todel C
    Arch Biochem Biophys; 1990 Aug; 281(1):1-5. PubMed ID: 2166475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of carp muscle parvalbumin fragments A (residues 1 leads to 75) and B (residues 76 leads to 108).
    Coffee CJ; Solano C
    Biochim Biophys Acta; 1976 Nov; 453(1):67-80. PubMed ID: 999890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reexamination of the primary structure of an antitumor protein, neocarzinostatin.
    Kuromizu K; Tsunasawa S; Maeda H; Abe O; Sakiyama F
    Arch Biochem Biophys; 1986 Apr; 246(1):199-205. PubMed ID: 2938543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine modification in Kunitz bovine trypsin inhibitor through 1, 2-cyclohexanedione.
    Menegatti E; Ferroni R; Benassi CA; Rocchi R
    Int J Pept Protein Res; 1977; 10(2):146-52. PubMed ID: 302243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione.
    Vlahos CJ; Ghalambor MA; Dekker EE
    J Biol Chem; 1985 May; 260(9):5480-5. PubMed ID: 3886656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neocarzinostatin: effect of modification of side chain amino and carboxyl groups on chemical and biological properties.
    Samy TS
    Biochemistry; 1977 Dec; 16(25):5573-8. PubMed ID: 144523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of arginine in the reactive site of proteinase inhibitors by selective and reversible derivatization of the arginine side chain.
    Dietl T; Tschesche H
    Hoppe Seylers Z Physiol Chem; 1976 May; 357(5):657-65. PubMed ID: 964925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A revised primary structure for neocarzinostatin based on fast atom bombardment and gas chromatographic-mass spectrometry.
    Gibson BW; Herlihy WC; Samy TS; Hahm KS; Maeda H; Meienhofer J; Biemann K
    J Biol Chem; 1984 Sep; 259(17):10801-6. PubMed ID: 6236220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH. Conversion to a homologous inactive preneocarzinostatin due to change of asparagine 83 to aspartic acid 83 accompanied by conformational and biological alterations.
    Maeda H; Kuromizu K
    J Biochem; 1977 Jan; 81(1):25-35. PubMed ID: 14934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional arginine residues involved in coenzyme binding by glutamate dehydrogenases.
    Blumenthal KM; Smith EL
    J Biol Chem; 1975 Aug; 250(16):6555-9. PubMed ID: 169251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.