These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 6445212)
1. [Stabilization of the relative concentration of ATP and invariants in the regulation of erythrocyte energy metabolism]. Kholodenko BN Biofizika; 1980; 25(2):258-64. PubMed ID: 6445212 [TBL] [Abstract][Full Text] [Related]
2. [Biochemical individuality of humans and invariants of regulation. Scale invariance of the characteristic of glycolysis in erythrocytes]. Kholodenko BN Biofizika; 1980; 25(2):250-7. PubMed ID: 7370336 [TBL] [Abstract][Full Text] [Related]
3. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization. Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640 [TBL] [Abstract][Full Text] [Related]
4. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors]. Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178 [TBL] [Abstract][Full Text] [Related]
5. [Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters]. Kholodenko BN; Dibrov BF; Zhabotinskiĭ AM Biofizika; 1981; 26(3):501-6. PubMed ID: 6455164 [TBL] [Abstract][Full Text] [Related]
6. [Effect of glycolysis on the metabolism of adenylates in human erythrocytes]. Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Pomazanov VV Biokhimiia; 1984 Jan; 49(1):104-10. PubMed ID: 6704444 [TBL] [Abstract][Full Text] [Related]
7. [The 2,3-diphosphoglycerate shunt and stabilization of the ATP level in mammalian erythrocytes]. Ataullakhanov AI; Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV Biokhimiia; 1985 Jun; 50(6):1005-11. PubMed ID: 3161547 [TBL] [Abstract][Full Text] [Related]
8. [Effect of gamma radiation on levels of adenine nucleotides in erythrocytes of healthy individuals after submaximum physical exertion]. Zagórski T; Dudek I; Mazurek M; Berkan L; Chmielewski H; Kedziora J Med Pr; 1994; 45(3):201-7. PubMed ID: 8084258 [TBL] [Abstract][Full Text] [Related]
9. Protecting the cellular energy state during contractions: role of AMP deaminase. Hancock CR; Brault JJ; Terjung RL J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488 [TBL] [Abstract][Full Text] [Related]
10. Alteration of erythrocyte membrane Na, K-ATPase in children with borderline or essential hypertension. Stojadinovic ND; Petronijević MR; Pavićević MH; Mrsulja BB; Kostić MM Cell Biochem Funct; 1996 Jun; 14(2):79-87. PubMed ID: 8640956 [TBL] [Abstract][Full Text] [Related]
11. Modelization of coordinated changes of adenylate energy charge and ATP/ADP ratio: application to energy metabolism in invertebrate and vertebrate skeletal muscle. Raffin JP; Thébault MT C R Acad Sci III; 1996 Jan; 319(1):9-15. PubMed ID: 8673620 [TBL] [Abstract][Full Text] [Related]
12. E-NTPDases and ecto-5'-nucleotidase expression profile in rat heart left ventricle and the extracellular nucleotide hydrolysis by their nerve terminal endings. Rücker B; Almeida ME; Libermann TA; Zerbini LF; Wink MR; Sarkis JJ Life Sci; 2008 Feb; 82(9-10):477-86. PubMed ID: 18201730 [TBL] [Abstract][Full Text] [Related]
13. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices. Bruno AN; Diniz GP; Ricachenevsky FK; Pochmann D; Bonan CD; Barreto-Chaves ML; Sarkis JJ Neurosci Res; 2005 May; 52(1):61-8. PubMed ID: 15811553 [TBL] [Abstract][Full Text] [Related]
14. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824 [TBL] [Abstract][Full Text] [Related]
15. [Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration]. Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Kholodenko BN Biofizika; 1979; 24(6):1048-53. PubMed ID: 159725 [TBL] [Abstract][Full Text] [Related]
16. The importance of ATPase microenvironment in muscle fatigue: a hypothesis. Korge P; Campbell KB Int J Sports Med; 1995 Apr; 16(3):172-9. PubMed ID: 7649708 [TBL] [Abstract][Full Text] [Related]
17. Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat. Calderwood SK; Bump EA; Stevenson MA; Van Kersen I; Hahn GM J Cell Physiol; 1985 Aug; 124(2):261-8. PubMed ID: 3900097 [TBL] [Abstract][Full Text] [Related]
18. [Levels of adenylic system components (ATP, ADP, AMP) and cAMP during development of Blastocladiella emersonii]. Sobeleva IS; Sokolova AI; Chirkov IuIu; Kritskiĭ MS Prikl Biokhim Mikrobiol; 1980; 16(2):172-7. PubMed ID: 6247713 [TBL] [Abstract][Full Text] [Related]
19. [Regulatory characteristics of the metabolic systems and the stabilization of the relative concentrations of ATP and reduced glutathione in human erythrocytes]. Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Piruzian LA; Pichugin AV Izv Akad Nauk SSSR Biol; 1982; (3):406-18. PubMed ID: 7096778 [No Abstract] [Full Text] [Related]
20. Concentrations of adenine nucleotides in erythrocytes of patients with gout. Nishida Y; Nishizawa T; Kagami T; Akaoka I Biol Psychiatry; 1977 Apr; 12(2):305-7. PubMed ID: 870098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]