These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6445751)

  • 1. Characterization of medium inorganic phosphate-water exchange catalyzed by sarcoplasmic reticulum vesicles.
    Ariki M; Boyer PD
    Biochemistry; 1980 Apr; 19(9):2001-4. PubMed ID: 6445751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation.
    Champeil P; Guillain F; Vénien C; Gingold MP
    Biochemistry; 1985 Jan; 24(1):69-81. PubMed ID: 3158341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction by nucleotide triphosphate hydrolysis of a form of sarcoplasmic reticulum ATPase capable of medium phosphate-oxygen exchange in presence of calcium.
    de Meis L; Boyer PD
    J Biol Chem; 1978 Mar; 253(5):1556-9. PubMed ID: 146715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP reversible Pi exchange and membrane phosphorylation in sarcoplasmic reticulum vesicles: activation by silver in the absence of a Ca2+ concentration gradient.
    de Meis L; Sorenson MM
    Biochemistry; 1975 Jun; 14(12):2739-44. PubMed ID: 125101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence.
    Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W
    Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between Ca2+ uptake, Ca2+ efflux and phosphoenzyme level in sarcoplasmic-reticulum vesicles.
    Benech JC; Galina A; de Meis L
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):427-32. PubMed ID: 1826078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 18O-probes of phosphoenzyme formation and cooperativity with sarcoplasmic reticulum ATPase.
    Boyer PD; Ariki M
    Fed Proc; 1980 May; 39(7):2410-4. PubMed ID: 6445286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles.
    Souza DO; de Meis L
    J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase.
    Wakabayashi S; Shigekawa M
    J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum.
    Dupont Y
    Eur J Biochem; 1980 Aug; 109(1):231-8. PubMed ID: 6447598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum.
    Garrahan PJ; Rega AF; Alonso GL
    Biochim Biophys Acta; 1976 Sep; 448(1):121-32. PubMed ID: 9151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+.
    Mintz E; Lacapère JJ; Guillain F
    J Biol Chem; 1990 Nov; 265(31):18762-8. PubMed ID: 2146262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane gradient and ligand-induced mechanisms of adenosine 5'-triphosphate synthesis by sarcoplasmic reticulum adenosinetriphosphatase.
    Fernandez-Belda F; Inesi G
    Biochemistry; 1986 Dec; 25(24):8083-9. PubMed ID: 2948567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg2+ and low Ca2+ concentrations.
    Shigekawa M; Dougherty JP
    J Biol Chem; 1978 Mar; 253(5):1451-7. PubMed ID: 146711
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of nonsolubilizing and solubilizing concentrations of Triton X-100 on Ca2+ binding and Ca2+-ATPase activity of sarcoplasmic reticulum.
    McIntosh DB; Davidson GA
    Biochemistry; 1984 Apr; 23(9):1959-65. PubMed ID: 6326816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N; Migala A; Hasselbach W
    Eur J Biochem; 1979 Nov; 101(2):593-606. PubMed ID: 160316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent.
    Myung J; Jencks WP
    Biochemistry; 1994 Jul; 33(29):8775-85. PubMed ID: 8038168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic effects of calcium and ADP on the phosphorylated intermediate of sarcoplasmic reticulum ATPase.
    Nakamura Y; Kurzmack M; Inesi G
    J Biol Chem; 1986 Mar; 261(7):3090-7. PubMed ID: 2936732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump.
    de Meis L
    J Biol Chem; 1976 Apr; 251(7):2055-62. PubMed ID: 5437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.