These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 6445994)
1. Distribution of sialic acid in frog skeletal muscle and effect of neuraminidase on Ca uptake and ATPase activity of sarcoplasmic reticulum. Suzuki T; Takauji M; Nagai T Jpn J Physiol; 1980; 30(1):61-70. PubMed ID: 6445994 [TBL] [Abstract][Full Text] [Related]
2. Discrimination of Ca(2+)-ATPase activity of the sarcoplasmic reticulum from actomyosin-type ATPase activity of myofibrils in skinned mammalian skeletal muscle fibres: distinct effects of cyclopiazonic acid on the two ATPase activities. Kurebayashi N; Ogawa Y J Muscle Res Cell Motil; 1991 Aug; 12(4):355-65. PubMed ID: 1834695 [TBL] [Abstract][Full Text] [Related]
3. Effect of dantrolene sodium on excitation-contraction coupling in frog skeletal muscle. Takauji M; Takahashi N; Nagai T Jpn J Physiol; 1975; 25(6):747-58. PubMed ID: 131870 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C; Xu A; Narayanan N Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909 [TBL] [Abstract][Full Text] [Related]
5. [Some properties of transport ATPases in functionally different muscles]. Esyrev OV; Uspanova AhK ; Omarova RD; Sarsenova ShS; Kniazevskaia IB Biokhimiia; 1976 Nov; 41(11):2056-61. PubMed ID: 139169 [TBL] [Abstract][Full Text] [Related]
6. The effect of the replacement of calcium by strontium on excitation-contraction coupling in frog skeletal muscle. Edwards C; Lorković H; Weber A J Physiol; 1966 Oct; 186(2):295-306. PubMed ID: 4226414 [TBL] [Abstract][Full Text] [Related]
7. The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits. Suko J J Physiol; 1973 Feb; 228(3):563-82. PubMed ID: 4267211 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the effects of the membrane-associated Ca2+/calmodulin-dependent protein kinase on Ca(2+)-ATPase function in cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum. Hawkins C; Xu A; Narayanan N Mol Cell Biochem; 1995 Jan; 142(2):131-8. PubMed ID: 7770065 [TBL] [Abstract][Full Text] [Related]
9. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Kutchai H; Campbell KP Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Martonosi AN Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162 [TBL] [Abstract][Full Text] [Related]
11. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis. Stienen GJ; Zaremba R; Elzinga G J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976 [TBL] [Abstract][Full Text] [Related]
12. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Yoshida H; Tonomura Y J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370 [TBL] [Abstract][Full Text] [Related]
13. Ca2+-ATPase activity and lipid composition of sarcoplasmic reticulum of the gastrocnemius muscle of denervated frog. Krishnamoorthy RV Indian J Physiol Pharmacol; 1975; 19(3):121-8. PubMed ID: 128520 [TBL] [Abstract][Full Text] [Related]
14. Effects of tetrandrine on calcium transport, protein fluorescences and membrane fluidity of sarcoplasmic reticulum. Chen LY; Chen X; Tian XL; Yu XH Br J Pharmacol; 2000 Oct; 131(3):530-6. PubMed ID: 11015304 [TBL] [Abstract][Full Text] [Related]
15. Uncoupling of ATP splitting from Ca(2+)-transport in Ca(2+)-transporting ATPase of the sarcoplasmic reticulum as a result of modification by N-(3-pyrene)maleimide: activation of a channel with a specificity for alkaline earth metal ions. Suzuki T; Kawakita M J Biochem; 1993 Aug; 114(2):203-9. PubMed ID: 8262900 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+-dependent ATPase. Sumida M; Sasaki S J Biochem; 1975 Oct; 78(4):757-62. PubMed ID: 55412 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of sarcoplasmic reticulum from slowly glycolysing and from rapidly glycolysing pig skeletal muscle post mortem. McIntosh DB; Berman MC; Kench JE Biochem J; 1977 Sep; 166(3):387-98. PubMed ID: 145857 [TBL] [Abstract][Full Text] [Related]
18. The effect of calcium ionophores on fragmented sarcoplasmic reticulum. Scarpa A; Baldassare J; Inesi G J Gen Physiol; 1972 Dec; 60(6):735-49. PubMed ID: 4264855 [TBL] [Abstract][Full Text] [Related]
19. [Several properties of the Ca-pump of rabbit skeletal muscle sarcoplasmic reticulum in hypercholesteremia]. Stoĭda LV; Boldyrev AA Biull Eksp Biol Med; 1978; 86(7):32-5. PubMed ID: 150294 [TBL] [Abstract][Full Text] [Related]
20. Gingerol, a novel cardiotonic agent, activates the Ca2+-pumping ATPase in skeletal and cardiac sarcoplasmic reticulum. Kobayashi M; Shoji N; Ohizumi Y Biochim Biophys Acta; 1987 Sep; 903(1):96-102. PubMed ID: 2443170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]