These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6446267)

  • 1. Regulation of chitin synthesis during germ-tube formation in Candida albicans.
    Chiew YY; Shepherd MG; Sullivan PA
    Arch Microbiol; 1980 Mar; 125(1-2):97-104. PubMed ID: 6446267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans.
    Chiew YY; Sullivan PA; Shepherd MG
    Can J Biochem; 1982 Jan; 60(1):15-20. PubMed ID: 6461404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans.
    Milewski S; Chmara H; Borowski E
    Arch Microbiol; 1986 Aug; 145(3):234-40. PubMed ID: 3532988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of glucosamine-6-phosphate synthase is important but not essential for germination and mycelial growth of Candida albicans.
    Gabriel I; Olchowy J; Stanisławska-Sachadyn A; Mio T; Kur J; Milewski S
    FEMS Microbiol Lett; 2004 Jun; 235(1):73-80. PubMed ID: 15158264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cerulenin and sodium butyrate on chitin synthesis in Candida albicans.
    Braun PC; Hector RF; Kamark ME; Hart JT; Cihlar RL
    Can J Microbiol; 1987 Jun; 33(6):546-50. PubMed ID: 2957042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis.
    Assrir N; Richez C; Durand P; Guittet E; Badet B; Lescop E; Badet-Denisot MA
    Biochimie; 2014 Feb; 97():39-48. PubMed ID: 24075873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N3-haloacetyl derivatives of L-2,3-diaminopropanoic acid: novel inactivators of glucosamine-6-phosphate synthase.
    Milewski S; Chmara H; Andruszkiewicz R; Borowski E
    Biochim Biophys Acta; 1992 Jan; 1115(3):225-9. PubMed ID: 1739736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress.
    Bulik DA; Olczak M; Lucero HA; Osmond BC; Robbins PW; Specht CA
    Eukaryot Cell; 2003 Oct; 2(5):886-900. PubMed ID: 14555471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans.
    Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W
    J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of UDP-GlcNAc biosynthesis in yeast.
    Milewski S; Gabriel I; Olchowy J
    Yeast; 2006 Jan; 23(1):1-14. PubMed ID: 16408321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation and solubilization of Candida albicans chitin synthetase.
    Braun PC; Calderone RA
    J Bacteriol; 1979 Nov; 140(2):666-70. PubMed ID: 387745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of chitin synthesis during dimorphic growth of Candida albicans.
    Munro CA; Schofield DA; Gooday GW; Gow NAR
    Microbiology (Reading); 1998 Feb; 144 ( Pt 2)():391-401. PubMed ID: 9493376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans.
    Park KS; Kang KC; Kim JH; Adams DJ; Johng TN; Paik YK
    J Antimicrob Chemother; 1999 May; 43(5):667-74. PubMed ID: 10382888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of the GFA1 gene encoding the glutamine:fructose-6-phosphate amidotransferase of Candida albicans.
    Smith RJ; Milewski S; Brown AJ; Gooday GW
    J Bacteriol; 1996 Apr; 178(8):2320-7. PubMed ID: 8636033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase.
    Milewski S; Kuszczak D; Jedrzejczak R; Smith RJ; Brown AJ; Gooday GW
    J Biol Chem; 1999 Feb; 274(7):4000-8. PubMed ID: 9933591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germ tube induction in Candida albicans.
    Shepherd MG; Yin CY; Ram SP; Sullivan PA
    Can J Microbiol; 1980 Jan; 26(1):21-6. PubMed ID: 6996798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highlights of glucosamine-6P synthase catalysis.
    Durand P; Golinelli-Pimpaneau B; Mouilleron S; Badet B; Badet-Denisot MA
    Arch Biochem Biophys; 2008 Jun; 474(2):302-17. PubMed ID: 18279655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.