These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6446372)

  • 41. Effect of shock on calcium accumulation by cardiac sarcoplasmic reticulum.
    Estes JE; Farley PE; Goldfarb RD
    Adv Shock Res; 1980; 3():229-37. PubMed ID: 6458201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation of calcium pump system and purification of calcium ion-dependent ATPase from heart muscle.
    Levitsky DO; Aliev MK; Kuzmin AV; Levchenko TS; Smirnov VN; Chazov EI
    Biochim Biophys Acta; 1976 Sep; 443(3):468-84. PubMed ID: 9144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid composition, Ca 2+ uptake and Ca 2+ -stimulated ATPase activity of sarcoplasmic reticulum of the cardiomyopathic hamster.
    Owens K; Weglicki WB; Ruth RC; Stam AC; Sonnenblick EH
    Biochim Biophys Acta; 1973 Jan; 296(1):71-8. PubMed ID: 4348318
    [No Abstract]   [Full Text] [Related]  

  • 44. Intracellular calcium and myocardial contractility. 3. Reduced calcium uptake and ATPase of the sarcoplasmic reticular fraction prepared from chronically failing calf hearts.
    Suko J; Vogel JH; Chidsey CA
    Circ Res; 1970 Aug; 27(2):235-47. PubMed ID: 4247907
    [No Abstract]   [Full Text] [Related]  

  • 45. Characterization of calmodulin effects on calcium transport in cardiac microsomes enriched in sarcoplasmic reticulum.
    Lopaschuk G; Richter B; Katz S
    Biochemistry; 1980 Nov; 19(24):5603-7. PubMed ID: 6257283
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Action of caffeine on calcium transport by isolated fractions of myofibrils, mitochondria, and sarcoplasmic reticulum from rabbit heart.
    Blayney L; Thomas H; Muir J; Henderson A
    Circ Res; 1978 Oct; 43(4):520-6. PubMed ID: 150953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system.
    Katz AM; Tada M; Kirchberger MA
    Adv Cyclic Nucleotide Res; 1975; 5():453-72. PubMed ID: 165680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phospholamban-mediated stimulation of Ca2+ uptake in sarcoplasmic reticulum from normal and failing hearts.
    Movsesian MA; Colyer J; Wang JH; Krall J
    J Clin Invest; 1990 May; 85(5):1698-702. PubMed ID: 2139670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Cyclic AMP level, dissociation of membrane-bound calmodulin and regulation of calcium transport in the heart sarcoplasmatic reticulum in circulatory hypoxia].
    Antipenko AE; Sviderskaia EV; Lyzlova SN
    Vopr Med Khim; 1985; 31(4):70-3. PubMed ID: 2996224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium metabolism in cardiac microsomes incubated with lanthanum ion.
    Entman ML; Hansen JL; Cook JW
    Biochem Biophys Res Commun; 1969 Apr; 35(2):258-64. PubMed ID: 4239104
    [No Abstract]   [Full Text] [Related]  

  • 53. Role of sarcolemmal changes in cardiac pathophysiology.
    Dhalla NS; Tomlinson CW; Singh JN; Lee SL; McNamara DB; Harrow JA; Yates JC
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():377-94. PubMed ID: 130663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adenosine triphosphate dependent calcium uptake by subcellular fractions from bovine neurohypophyses.
    Russell JT; Thorn NA
    Acta Physiol Scand; 1975 Mar; 93(3):364-77. PubMed ID: 238361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of calmodulin on the active calcium-ion transport and (Ca2+ + Mg2+)-dependent ATPase in microsomal fractions of smooth muscle compared with that in erythrocytes and cardiac muscle.
    Wuytack F; De Schutter G; Casteels R
    Biochem J; 1980 Sep; 190(3):827-31. PubMed ID: 6451219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium accumulating and ATPase activity of cardiac sarcoplasmic reticulum before and after birth.
    Nayler WG; Fassold E
    Cardiovasc Res; 1977 May; 11(3):231-7. PubMed ID: 141328
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ATP-dependent calcium sequestration and calcium/ATP stoichiometry in isolated microsomes from guinea pig parotid glands.
    Immelmann A; Söling HD
    FEBS Lett; 1983 Oct; 162(2):406-10. PubMed ID: 6226538
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Distribution of the action of creatine kinase, AMP-aminohydrolase and ATPase,and absorption of Ca+n microsomal fractions of skeletal muscles].
    Dmytrenko MP; Piskarev VB; Lytvynenko OO; Nechyporenko ZY
    Ukr Biokhim Zh; 1975; 47(4):438-43. PubMed ID: 128864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of adrenochrome on calcium accumulating and adenosine triphosphatase activities of the rat heart microsomes.
    Takeo S; Taam GM; Beamish RE; Dhalla NS
    J Pharmacol Exp Ther; 1980 Sep; 214(3):688-93. PubMed ID: 6447203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.