These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6446372)

  • 61. Adaptive changes in subcellular calcium transport during catecholamine-induced cardiomyopathy.
    Panagia V; Pierce GN; Dhalla KS; Ganguly PK; Beamish RE; Dhalla NS
    J Mol Cell Cardiol; 1985 Apr; 17(4):411-20. PubMed ID: 4020877
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Subcellular and functional effects of quinidine, procaine amide, and lidocaine on rat myocardium.
    Harrow JA; Dhalla NS
    Can J Physiol Pharmacol; 1975 Dec; 53(6):1058-64. PubMed ID: 130965
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [The contractile function and calcium-transport system of the myocardium in aging].
    Frol'kis VV; Frol'kis RA; Mkhitarian LS; Shevchuk VG; Fraĭfel'd VE
    Fiziol Zh SSSR Im I M Sechenova; 1988 Feb; 74(2):224-33. PubMed ID: 2967197
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of ischaemia on cardiac contractility and calcium exchangeability.
    Nayler WG; Stone J; Carson V; Chipperfield D
    J Mol Cell Cardiol; 1971 Jun; 2(2):125-43. PubMed ID: 4255911
    [No Abstract]   [Full Text] [Related]  

  • 65. [Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart].
    Kravtsov GM; Pokudin NI; Orlov SN
    Biokhimiia; 1979 Nov; 44(11):2058-65. PubMed ID: 546448
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Parotid microsomal Ca2+ transport. Subcellular localization and characterization.
    Kanagasuntheram P; Teo TS
    Biochem J; 1982 Dec; 208(3):789-94. PubMed ID: 6925974
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Calcium uptake and ATPase activity of microsomes from heterotopically transplanted rabbit heart.
    Stephens MR; Smith S; Williams GJ; Muir JR
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():189-94. PubMed ID: 127353
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of cyclic nucleotides and protein phosphorylation on calcium permeability and binding in the sarcoplasmic reticulum.
    Weller M; Laing W
    Biochim Biophys Acta; 1979 Mar; 551(2):406-19. PubMed ID: 217433
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alterations in cardiac function and subcellular membrane activities after hypervitaminosis D3.
    Takeo S; Tanonaka R; Tanonaka K; Miyake K; Hisayama H; Ueda N; Kawakami K; Tsumura H; Katsushika S; Taniguchi Y
    Mol Cell Biochem; 1991 Oct; 107(2):169-83. PubMed ID: 1665200
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Study of the active calcium transport mechanisms in uterine smooth muscle].
    Kurskiĭ MD; Fedorov AN; Iakovenko AP
    Vopr Med Khim; 1976; 22(2):223-7. PubMed ID: 140526
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Defects in calcium regulatory mechanisms in heart failure.
    Dhalla NS
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():521-34. PubMed ID: 4283221
    [No Abstract]   [Full Text] [Related]  

  • 72. Mediation of sarcoplasmic reticulum disruption in the ischemic myocardium: proposed mechanism by the interaction of hydrogen ions and oxygen free radicals.
    Hess ML; Krause S; Kontos HA
    Adv Exp Med Biol; 1983; 161():377-89. PubMed ID: 6307008
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Abnormalities of myopathic subcellular fractions: composition and function.
    Owens K; Weglicki WB; Ruth RC; Sonnenblick EH
    Adv Cardiol; 1974; 13():94-105. PubMed ID: 4375410
    [No Abstract]   [Full Text] [Related]  

  • 74. Intracellular localization of the calcium antagonist propyl-methylenedioxyindene in cardiac tissue.
    Lynch JJ; Rahwan RG; Witiak DT; Cazer FD
    Gen Pharmacol; 1983; 14(6):571-8. PubMed ID: 6662339
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Compensatory adaptation of the heart to chronic rate overload: increase in calcium transport ATPase activity of myocardial sarcoplasmic reticulum.
    O'Brien PJ; Ling E; Williams HM; Brotherton S; Salerno T; Lumsden JH; Ianuzzo CD
    Can J Cardiol; 1988; 4(5):243-50. PubMed ID: 2970289
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evidence for an effect of phospholamban on the regulatory role of ATP in calcium uptake by the calcium pump of the cardiac sarcoplasmic reticulum.
    Lu YZ; Xu ZC; Kirchberger MA
    Biochemistry; 1993 Mar; 32(12):3105-11. PubMed ID: 8384487
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Binding of [3H]atropine by cardiac plasma membrane-enriched fractions.
    Ma SK; Sulakhe PV; Leung NL
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():249-56. PubMed ID: 145630
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sodium and potassium sensitivity of calcium uptake and calcium binding by dog cardiac microsomes.
    Katz AM; Repke DI
    Circ Res; 1967 Nov; 21(5):767-75. PubMed ID: 6073568
    [No Abstract]   [Full Text] [Related]  

  • 79. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia.
    Rouslin W; Pullman ME
    J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction.
    Hassoun SM; Marechal X; Montaigne D; Bouazza Y; Decoster B; Lancel S; Neviere R
    Crit Care Med; 2008 Sep; 36(9):2590-6. PubMed ID: 18679108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.