These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 6446554)
1. Effect of K+ on phosphorylation of the sarcoplasmic reticulum ATPase by either Pi or ATP. Chaloub RM; de Meis L J Biol Chem; 1980 Jul; 255(13):6168-72. PubMed ID: 6446554 [TBL] [Abstract][Full Text] [Related]
2. Transient state kinetic studies of phosphorylation by ATP and Pi of the calcium-dependent ATPase from sarcoplasmic reticulum. Vieyra A; Scofano HM; Guimarães-Motta H; Tume RK; de Meis L Biochim Biophys Acta; 1979 Jun; 568(2):437-45. PubMed ID: 158391 [TBL] [Abstract][Full Text] [Related]
3. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Fujimori T; Jencks WP J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527 [TBL] [Abstract][Full Text] [Related]
4. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme. Hanel AM; Jencks WP Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656 [TBL] [Abstract][Full Text] [Related]
5. The ATP-induced change of tryptophan fluorescence reflects a conformational change upon formation of ADP-sensitive phosphoenzyme in the sarcoplasmic reticulum Ca(2+)-ATPase. Stopped-flow spectrofluorometry and continuous flow-rapid quenching method. Nakamura S; Suzuki H; Kanazawa T J Biol Chem; 1994 Jun; 269(23):16015-9. PubMed ID: 8206898 [TBL] [Abstract][Full Text] [Related]
6. Effect of ADP on the rate of acetyl phosphate hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum. Montero-Lomeli M; De Meis L Eur J Biochem; 1989 Dec; 186(1-2):339-42. PubMed ID: 2532131 [TBL] [Abstract][Full Text] [Related]
7. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y; Yamada S; Nakao M J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400 [TBL] [Abstract][Full Text] [Related]
8. Energy interconversion in sarcoplasmic reticulum vesicles in the presence of Ca2+ and Sr2+ gradients. Guimarães-Motta H; Sande-Lemos MP; de Meis L J Biol Chem; 1984 Jul; 259(14):8699-705. PubMed ID: 6235215 [TBL] [Abstract][Full Text] [Related]
9. Phosphoenzymes formed from Mg.ATP and Ca.ATP during pre-steady state kinetics of sarcoplasmic reticulum ATPase. Orlowski S; Lund S; Møller J; Champeil P J Biol Chem; 1988 Nov; 263(33):17576-83. PubMed ID: 2972721 [TBL] [Abstract][Full Text] [Related]
10. The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of calcium. Carvalho-Alves PC; Scofano HM J Biol Chem; 1987 May; 262(14):6610-4. PubMed ID: 2952654 [TBL] [Abstract][Full Text] [Related]
11. Ca2+ gradient and drugs reveal different binding sites for Pi and Mg2+ in phosphorylation of the sarcoplasmic reticulum ATPase. De Meis L; Suzano VA; Caldeira T; Mintz E; Guillain F Eur J Biochem; 1991 Aug; 200(1):209-13. PubMed ID: 1831758 [TBL] [Abstract][Full Text] [Related]
12. Slow transition of phosphoenzyme from ADP-sensitive to ADP-insensitive forms in solubilized Ca2+, Mg2+-ATPase of sarcoplasmic reticulum: evidence for retarded dissociation of Ca2+ from the phosphoenzyme. Takakuwa Y; Kanazawa T Biochem Biophys Res Commun; 1979 Jun; 88(4):1209-16. PubMed ID: 157738 [No Abstract] [Full Text] [Related]
13. Effects of arsenate on the Ca2+ ATPase of sarcoplasmic reticulum. Alves EW; de Meis L Eur J Biochem; 1987 Aug; 166(3):647-51. PubMed ID: 2956098 [TBL] [Abstract][Full Text] [Related]
14. Substrate regulation of the sarcoplasmic reticulum ATPase. Transient kinetic studies. Scofano HM; Vieyra A; de Meis L J Biol Chem; 1979 Oct; 254(20):10227-31. PubMed ID: 158593 [TBL] [Abstract][Full Text] [Related]
15. Functional role of "N" (nucleotide) and "P" (phosphorylation) domain interactions in the sarcoplasmic reticulum (SERCA) ATPase. Hua S; Ma H; Lewis D; Inesi G; Toyoshima C Biochemistry; 2002 Feb; 41(7):2264-72. PubMed ID: 11841218 [TBL] [Abstract][Full Text] [Related]
16. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase. Medda P; Fassold E; Hasselbach W Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819 [TBL] [Abstract][Full Text] [Related]
17. Effects of nonsolubilizing and solubilizing concentrations of Triton X-100 on Ca2+ binding and Ca2+-ATPase activity of sarcoplasmic reticulum. McIntosh DB; Davidson GA Biochemistry; 1984 Apr; 23(9):1959-65. PubMed ID: 6326816 [TBL] [Abstract][Full Text] [Related]
18. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP. Vieyra A; Mintz E; Lowe J; Guillain F Biochim Biophys Acta; 2004 Dec; 1667(2):103-13. PubMed ID: 15581845 [TBL] [Abstract][Full Text] [Related]
19. Ca2+ translocation and catalytic activity of the sarcoplasmic reticulum ATPase. Modulation by ATP, Ca2+, and Pi. Galina A; de Meis L J Biol Chem; 1991 Sep; 266(27):17978-82. PubMed ID: 1833389 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the phosphoenzyme that is involved in the Ca2+ -Ca2+ exchange catalyzed by the Ca2+ -ATPase of sarcoplasmic reticulum vesicles. Inao S; Kanazawa T Biochim Biophys Acta; 1986 May; 857(1):28-37. PubMed ID: 2938630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]