BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6447149)

  • 1. Mechanism of inactivation of myosin subfragment 1 by Co(III)phenATP. A reinvestigation.
    Wells JA; Werber MM; Yount RG
    J Biol Chem; 1980 Aug; 255(16):7552-5. PubMed ID: 6447149
    [No Abstract]   [Full Text] [Related]  

  • 2. Spatial proximity of the two essential sulfhydryl groups of myosin.
    Reisler E; Burke M; Himmelfarb S; Harrington WF
    Biochemistry; 1974 Sep; 13(19):3837-40. PubMed ID: 4278279
    [No Abstract]   [Full Text] [Related]  

  • 3. Inactivation of myosin subfragment one by cobalt(II)/cobalt(III) phenanthroline complexes. 2. Cobalt chelation of two critical SH groups.
    Wells JA; Werber MM; Yount RG
    Biochemistry; 1979 Oct; 18(22):4800-5. PubMed ID: 159719
    [No Abstract]   [Full Text] [Related]  

  • 4. Equilibrium and rapid kinetic studies of the effect of N-ethylmaleimide on the binding of ADP to myosin, and H-meromyosin.
    Malik MN; Martonosi A
    Arch Biochem Biophys; 1971 Jun; 144(2):556-65. PubMed ID: 4255040
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine triphosphate inhibition in myosin adenosine triphosphate systems.
    Avena RM; Bowen WJ
    J Biol Chem; 1971 Apr; 246(7):2265-70. PubMed ID: 4252224
    [No Abstract]   [Full Text] [Related]  

  • 6. Inactivation of myosin subfragment one by cobalt(II)/cobalt(III) phenanthroline complexes. I. Incorporation of Co(III) by in situ oxidation of Co(II).
    Wells JA; Werber MM; Legg JI; Yount RG
    Biochemistry; 1979 Oct; 18(22):4793-9. PubMed ID: 41570
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of phenol derivatives and chemical modification on the adenosine triphosphatase activities of heavy meromyosin and subfragment 1.
    Kameyama T; Hayakawa S; Sekine T
    J Biochem; 1974 Feb; 75(2):381-7. PubMed ID: 4276061
    [No Abstract]   [Full Text] [Related]  

  • 8. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction.
    Bagshaw CR; Trentham DR
    Biochem J; 1974 Aug; 141(2):331-49. PubMed ID: 4281653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction of myosin with a bromoalkyl analog of adenosine triphosphate.
    Mornet D; der Terrossian E; Pradel LA; Kassab R; Barman TE
    FEBS Lett; 1977 Dec; 84(2):362-6. PubMed ID: 145955
    [No Abstract]   [Full Text] [Related]  

  • 10. Reaction mechanism of the ATPase activity of mitochondrial F1 studied by using a fluorescent ATP analog, 2'-(5-dimethylaminonaphthalene-1-sulfonyl) amino-2'-deoxyATP: its striking resemblance to that of myosin ATPase.
    Matsuoka I; Watanabe T; Tonomura Y
    J Biochem; 1981 Oct; 90(4):967-89. PubMed ID: 6458602
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure and function of the two heads of the myosin molecule. IV. Physiological functions of various reaction intermediates in myosin adenosinetriphosphatase, studied by the interaction between actomyosin and 8-bromoadenosine triphosphate.
    Takenaka H; Ikehara M; Tonomura Y
    J Biochem; 1976 Dec; 80(6):1381-92. PubMed ID: 138680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of acto-H-meromyosin and that of acto-subfragment-1 induced by adenyl-5'-yl-imidodiphosphate: evidence for a ternary complex of F-actin, myosin head, and substrate.
    Inoue A; Tonomura Y
    J Biochem; 1980 Dec; 88(6):1643-51. PubMed ID: 6893984
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of substrate concentration on the Mg-adenosine triphosphatase activity of myosin.
    Nihei T; Filipenko CA
    Can J Biochem; 1975 Dec; 53(12):1282-7. PubMed ID: 130198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational differences in Myosin, II. Evidence for differences in the conformation induced by bound or hydrolyzed adenosine triphosphate.
    Watterson JG; Schaub MC
    Hoppe Seylers Z Physiol Chem; 1973 Dec; 354(12):1619-25. PubMed ID: 4373368
    [No Abstract]   [Full Text] [Related]  

  • 15. Myosin ATP hydrolysis: a mechanism involving a magnesium chelate complex.
    Burke M; Reisler E; Harrington WF
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3793-6. PubMed ID: 4272702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amount of nucleotide binding and the P1-burst size of myosin adenosinetriphosphatase: evidence for the nonidentical two-headed structure of myosin.
    Furukawa KI; Ikebe M; Inoue A; Tonomura Y
    J Biochem; 1980 Dec; 88(6):1629-41. PubMed ID: 6450753
    [No Abstract]   [Full Text] [Related]  

  • 17. Cooperative role of two sulfhydryl groups in myosin adenosine triphosphatase.
    Reisler E; Burke M; Harrington WF
    Biochemistry; 1974 May; 13(10):2014-22. PubMed ID: 4275027
    [No Abstract]   [Full Text] [Related]  

  • 18. The pre-steady state of the myosin-adenosine triphosphate system. IX. Effect of F-actin on the myosin-ATP system.
    Kinoshita N; Kanazawa T; Onishi H; Tonomura Y
    J Biochem; 1969 Apr; 65(4):567-79. PubMed ID: 4240977
    [No Abstract]   [Full Text] [Related]  

  • 19. ON THE ACTIVATION OF MYOSIN ATPASE BY EDTA.
    MUEHLRAD A; FABIAN F; BIRO NA
    Biochim Biophys Acta; 1964 Jul; 89():186-8. PubMed ID: 14213004
    [No Abstract]   [Full Text] [Related]  

  • 20. Differential modification of specific lysine residues in the two kinds of subfragment-1 of myosin with 2, 4, 6-trinitrobenzenesulfonate.
    Miyanishi T; Inoue A; Tonomura Y
    J Biochem; 1979 Mar; 85(3):747-53. PubMed ID: 218922
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.