These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 6447592)
1. Structural basis of ciliary movement. Satir P Environ Health Perspect; 1980 Apr; 35():77-82. PubMed ID: 6447592 [TBL] [Abstract][Full Text] [Related]
2. Splitting the ciliary axoneme: implications for a "switch-point" model of dynein arm activity in ciliary motion. Satir P; Matsuoka T Cell Motil Cytoskeleton; 1989; 14(3):345-58. PubMed ID: 2531043 [TBL] [Abstract][Full Text] [Related]
3. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. Warner FD; Satir P J Cell Biol; 1974 Oct; 63(1):35-63. PubMed ID: 4424314 [TBL] [Abstract][Full Text] [Related]
4. How signals of calcium ions initiate the beats of cilia and flagella. Satarić MV; Nemeš T; Sekulić D; Tuszynski JA Biosystems; 2019 Aug; 182():42-51. PubMed ID: 31202860 [TBL] [Abstract][Full Text] [Related]
5. A physical model of microtubule sliding in ciliary axonemes. Holwill ME; Satir P Biophys J; 1990 Oct; 58(4):905-17. PubMed ID: 2147395 [TBL] [Abstract][Full Text] [Related]
6. The role of axonemal components in ciliary motility. Satir P Comp Biochem Physiol A Comp Physiol; 1989; 94(2):351-7. PubMed ID: 2573479 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of gliding movement by calcium in doublet microtubules on Tetrahymena ciliary dyneins in vitro. Mori M; Miki-Noumura T Exp Cell Res; 1992 Dec; 203(2):483-7. PubMed ID: 1459207 [TBL] [Abstract][Full Text] [Related]
8. Calcium control of ciliary arrest in mussel gill cells. Walter MF; Satir P J Cell Biol; 1978 Oct; 79(1):110-20. PubMed ID: 359573 [TBL] [Abstract][Full Text] [Related]
9. The mechanochemical cycle of the dynein arm. Satir P; Wais-Steider J; Lebduska S; Nasr A; Avolio J Cell Motil; 1981; 1(3):303-27. PubMed ID: 6216955 [TBL] [Abstract][Full Text] [Related]
10. Kartagener's syndrome with motile cilia and immotile spermatozoa: axonemal ultrastructure and function. Wilton LJ; Teichtahl H; Temple-Smith PD; De Kretser DM Am Rev Respir Dis; 1986 Dec; 134(6):1233-6. PubMed ID: 2947526 [TBL] [Abstract][Full Text] [Related]
11. Dynein as a microtubule translocator in ciliary motility: current studies of arm structure and activity pattern. Satir P Cell Motil Cytoskeleton; 1988; 10(1-2):263-70. PubMed ID: 2972400 [TBL] [Abstract][Full Text] [Related]
12. Physical model of axonemal splitting. Holwill ME; Satir P Cell Motil Cytoskeleton; 1994; 27(4):287-98. PubMed ID: 8069937 [TBL] [Abstract][Full Text] [Related]
13. [Molecular basis of sperm movement (author's transl)]. Bouchard P; Cosson MP Ann Endocrinol (Paris); 1981; 42(4-5):398-406. PubMed ID: 6462099 [TBL] [Abstract][Full Text] [Related]
14. Fifty years of microtubule sliding in cilia. King SM; Sale WS Mol Biol Cell; 2018 Mar; 29(6):698-701. PubMed ID: 29535180 [TBL] [Abstract][Full Text] [Related]
15. The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization. Yu Y; Shinohara K; Xu H; Li Z; Nishida T; Hamada H; Xu Y; Zhou J; Shao D; Li X; Chen D Cell Physiol Biochem; 2018; 51(6):2843-2857. PubMed ID: 30562762 [TBL] [Abstract][Full Text] [Related]
16. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. Zanetti NC; Mitchell DR; Warner FD J Cell Biol; 1979 Mar; 80(3):573-88. PubMed ID: 156731 [TBL] [Abstract][Full Text] [Related]
17. Dynein arm attachment probed with a non-hydrolyzable ATP analog. Structural evidence for patterns of activity. Spungin B; Avolio J; Arden S; Satir P J Mol Biol; 1987 Oct; 197(4):671-7. PubMed ID: 2963133 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a role of 13S axonemal ATPase in modulation of ciliary microtubule sliding. Zanetti NC; Warner FD Cell Motil; 1982; 2(6):509-23. PubMed ID: 6220805 [TBL] [Abstract][Full Text] [Related]