These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 6447689)
1. purF-lac fusion and direction of purF transcription in Escherichia coli. Smith JM; Gots JS J Bacteriol; 1980 Sep; 143(3):1156-64. PubMed ID: 6447689 [TBL] [Abstract][Full Text] [Related]
2. Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosylpyrophosphate amidotransferase. Tso JY; Zalkin H; van Cleemput M; Yanofsky C; Smith JM J Biol Chem; 1982 Apr; 257(7):3525-31. PubMed ID: 6277938 [TBL] [Abstract][Full Text] [Related]
3. Fusion of the lac genes to the promoter for the aminopeptidase N gene of Escherichia coli. Murgier M; Gharbi S Mol Gen Genet; 1982; 187(2):316-9. PubMed ID: 6129564 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequence of the Escherichia coli purF gene encoding amidophosphoribosyltransferase for de novo purine nucleotide synthesis. Sampei G; Mizobuchi K Nucleic Acids Res; 1988 Sep; 16(17):8717. PubMed ID: 3047685 [No Abstract] [Full Text] [Related]
5. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme. Makaroff CA; Zalkin H; Switzer RL; Vollmer SJ J Biol Chem; 1983 Sep; 258(17):10586-93. PubMed ID: 6411717 [TBL] [Abstract][Full Text] [Related]
6. Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other PurF-type amidotransferases. Mei BG; Zalkin H J Bacteriol; 1990 Jun; 172(6):3512-4. PubMed ID: 2188964 [TBL] [Abstract][Full Text] [Related]
7. Glutamine phosphoribosylpyrophosphate amidotransferase from cloned Escherichia coli purF. NH2-terminal amino acid sequence, identification of the glutamine site, and trace metal analysis. Tso JY; Hermodson MA; Zalkin H J Biol Chem; 1982 Apr; 257(7):3532-6. PubMed ID: 7037784 [TBL] [Abstract][Full Text] [Related]
8. Regulation of expression of the dadA gene encoding D-amino acid dehydrogenase in Escherichia coli: analysis of dadA-lac fusions and direction of dadA transcription. Wild J; Obrepalska B Mol Gen Genet; 1982; 186(3):405-10. PubMed ID: 6126797 [TBL] [Abstract][Full Text] [Related]
9. Isolation of fusions between the lac genes and several genes of the exu regulon: analysis of their regulation, determination of the transcription direction of the uxaC-uxaA operon, in Escherichia coli K-12. Hugouvieux-Cotte-Pattat N; Robert-Baudouy J Mol Gen Genet; 1981; 182(2):279-87. PubMed ID: 7026975 [TBL] [Abstract][Full Text] [Related]
10. Use of argA-lac fusions to generate lambda argA-lac bacteriophages and to determine the direction of argA transcription in Escherichia coli. Eckhardt T J Bacteriol; 1977 Oct; 132(1):60-6. PubMed ID: 410785 [TBL] [Abstract][Full Text] [Related]
11. Characterization of fusions between the lac operon and the ilv gene cluster in Escherichia coli: ilvC-lac fusions. Smith JM; Umbarger HE J Bacteriol; 1977 Dec; 132(3):870-5. PubMed ID: 336610 [TBL] [Abstract][Full Text] [Related]
12. Fusion of the lac genes to the promotor for the cytidine deaminase gene of Escherichia coli K-12. Josephsen J; Hammer-Jespersen K Mol Gen Genet; 1981; 182(1):154-8. PubMed ID: 6455590 [TBL] [Abstract][Full Text] [Related]
13. Regulation of Escherichia coli purF. Mutations that define the promoter, operator, and purine repressor gene. Rolfes RJ; Zalkin H J Biol Chem; 1988 Dec; 263(36):19649-52. PubMed ID: 3058703 [TBL] [Abstract][Full Text] [Related]
14. Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110. Matsui H; Kawasaki H; Shimaoka M; Kurahashi O Biosci Biotechnol Biochem; 2001 Mar; 65(3):570-8. PubMed ID: 11330670 [TBL] [Abstract][Full Text] [Related]
15. The hisT-purF region of the Escherichia coli K-12 chromosome. Identification of additional genes of the hisT and purF operons. Nonet ML; Marvel CC; Tolan DR J Biol Chem; 1987 Sep; 262(25):12209-17. PubMed ID: 3040734 [TBL] [Abstract][Full Text] [Related]
16. Isolation and analysis of aroFo mutants by using an aroF-lac operon fusion. Cobbett CS; Morrison S; Pittard J J Bacteriol; 1984 Jan; 157(1):303-10. PubMed ID: 6317654 [TBL] [Abstract][Full Text] [Related]
17. Insertion of bacteriophage lambda into the deo operon of Escherichia coli K-12 and isolation of plaque-forming lambdadeo+ transducing bacteriophages. Buxton RS; Hammer-Jespersen K; Hansen TD J Bacteriol; 1978 Nov; 136(2):668-81. PubMed ID: 361716 [TBL] [Abstract][Full Text] [Related]
18. Specialized transduction with lambda plac5: dependence on recB. Porter RD; Welliver RA; Witkowski TA J Bacteriol; 1982 Jun; 150(3):1485-8. PubMed ID: 6210690 [TBL] [Abstract][Full Text] [Related]
20. Overproduction of phage lambda repressor under control of the lac promotor of Escherichia coli. Gronenborn B Mol Gen Genet; 1976 Nov; 148(3):243-50. PubMed ID: 796661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]