These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 6448165)
21. Suppression of nigrostriatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: a microdialysis study. Lategan AJ; Marien MR; Colpaert FC Life Sci; 1992; 50(14):995-9. PubMed ID: 1372673 [TBL] [Abstract][Full Text] [Related]
22. Neurochemical studies on central dopamine neurons--regional characterization of dopamine turnover. Hallman H; Jonsson G Med Biol; 1984; 62(3):198-209. PubMed ID: 6492900 [TBL] [Abstract][Full Text] [Related]
23. Reduced haloperidol: effects on striatal dopamine metabolism and conversion to haloperidol in the rat. Korpi ER; Wyatt RJ Psychopharmacology (Berl); 1984; 83(1):34-7. PubMed ID: 6204352 [TBL] [Abstract][Full Text] [Related]
24. Differential effect of acute and chronic haloperidol administration on dopamine turnover in rat nigrostriatal and retinal dopaminergic neurons. Melamed E; Durst R; Frucht Y; Globus M Eur J Pharmacol; 1983 May; 89(3-4):279-82. PubMed ID: 6873163 [TBL] [Abstract][Full Text] [Related]
25. Effect of mecamylamine on the fate of dopamine in striatal and mesolimbic areas of rat brain; interaction with morphine and haloperidol. Ahtee L; Kaakkola S Br J Pharmacol; 1978 Feb; 62(2):213-8. PubMed ID: 564219 [TBL] [Abstract][Full Text] [Related]
26. Effect of repeated ('binge') dosing of MDMA to rats housed at normal and high temperature on neurotoxic damage to cerebral 5-HT and dopamine neurones. Sanchez V; O'shea E; Saadat KS; Elliott JM; Colado MI; Green AR J Psychopharmacol; 2004 Sep; 18(3):412-6. PubMed ID: 15358986 [TBL] [Abstract][Full Text] [Related]
27. Long-term decreases in striatal dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid after a single injection of amphetamine in iprindole-treated rats: time course and time-dependent interactions with amfonelic acid. Steranka LR Brain Res; 1982 Feb; 234(1):123-36. PubMed ID: 7059818 [TBL] [Abstract][Full Text] [Related]
28. Apomorphine-haloperidol interactions: different types of antagonism in cortical and subcortical brain regions. Bacopoulos NG; Roth RH Brain Res; 1981 Feb; 205(2):313-9. PubMed ID: 7470869 [TBL] [Abstract][Full Text] [Related]
30. Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain. Westerink BH; Korf J Eur J Pharmacol; 1976 Jun; 37(2):249-55. PubMed ID: 954808 [TBL] [Abstract][Full Text] [Related]
31. On the relevance of preferential increases of mesolimbic versus striatal dopamine turnover for the prediction of antipsychotic activity of psychotropic drugs. Waldmeier PC; MaƮtre L J Neurochem; 1976 Aug; 27(2):589-97. PubMed ID: 989496 [No Abstract] [Full Text] [Related]
32. Developmental change in striatal concentration of homovanillic acid and 3,4-dihydroxyphenylacetic acid in response to apomorphine and haloperidol treatment. Nomura Y; Komori T; Okuda S; Segawa T Arch Int Pharmacodyn Ther; 1979 Jan; 237(1):25-30. PubMed ID: 485682 [TBL] [Abstract][Full Text] [Related]
33. Apomorphine- and haloperidol-induced change in 3,4-dihydroxyphenylacetic acid content in the mesolimbic-striatum of the developing rat. Nomura Y; Oki K; Segawa T J Pharmacobiodyn; 1980 Feb; 3(2):111-6. PubMed ID: 7205536 [TBL] [Abstract][Full Text] [Related]
34. Preferential stimulation of extracellular release of dopamine in rat frontal cortex to striatum following competitive inhibition of the N-methyl-D-aspartate receptor. Nishijima K; Kashiwa A; Nishikawa T J Neurochem; 1994 Jul; 63(1):375-8. PubMed ID: 8207441 [TBL] [Abstract][Full Text] [Related]
35. Changes in mesolimbic homovanillic acid content following discrete modulation of striatal dopamine systems [proceedings]. Costall B; Naylor RJ Br J Pharmacol; 1979 May; 66(1):105P-106P. PubMed ID: 454900 [No Abstract] [Full Text] [Related]
36. Developmental differences in acute nigrostriatal and mesocorticolimbic system response to haloperidol. Teicher MH; Barber NI; Gelbard HA; Gallitano AL; Campbell A; Marsh E; Baldessarini RJ Neuropsychopharmacology; 1993 Sep; 9(2):147-56. PubMed ID: 8216697 [TBL] [Abstract][Full Text] [Related]
37. Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. Martin P; Waters N; Schmidt CJ; Carlsson A; Carlsson ML J Neural Transm (Vienna); 1998; 105(4-5):365-96. PubMed ID: 9720968 [TBL] [Abstract][Full Text] [Related]
38. Dopamine release and metabolism in the rat frontal cortex, nucleus accumbens, and striatum: a comparison of acute clozapine and haloperidol. Karoum F; Egan MF Br J Pharmacol; 1992 Mar; 105(3):703-7. PubMed ID: 1628156 [TBL] [Abstract][Full Text] [Related]
39. Differential effects of d- and l-propranolol on dopamine turnover stimulated by oxotremorine in striatal and mesolimbic areas of rat brain. Weinstock M; Zavadil AP; Kopin IJ Eur J Pharmacol; 1979 Nov; 59(3-4):187-93. PubMed ID: 527644 [TBL] [Abstract][Full Text] [Related]
40. Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain. Westerink BH; Korf J Eur J Pharmacol; 1975 Aug; 33(1):31-40. PubMed ID: 126169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]