These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 6449009)

  • 1. Eukaryotic DNA segments capable of autonomous replication in yeast.
    Stinchcomb DT; Thomas M; Kelly J; Selker E; Davis RW
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4559-63. PubMed ID: 6449009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of autonomously replicating circular subtelomeric Y' elements in Saccharomyces cerevisiae.
    Horowitz H; Haber JE
    Mol Cell Biol; 1985 Sep; 5(9):2369-80. PubMed ID: 3915542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of a Saccharomyces cerevisiae mtDNA segment conferring high-frequency yeast transformation.
    Hyman BC; Cramer JH; Rownd RH
    Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1578-82. PubMed ID: 7041124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Physarum DNA segments that support autonomous replication in yeast.
    Gorman JA; Dove WF; Warren N
    Mol Gen Genet; 1981; 183(2):306-13. PubMed ID: 7035828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast.
    Zakian VA
    Proc Natl Acad Sci U S A; 1981 May; 78(5):3128-32. PubMed ID: 7019920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA sequences from a ligninolytic filamentous fungus Phanerochaete chrysosporium capable of autonomous replication in yeast.
    Rao TR; Reddy CA
    Biochem Biophys Res Commun; 1984 Feb; 118(3):821-7. PubMed ID: 6322767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules.
    Struhl K; Stinchcomb DT; Scherer S; Davis RW
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1035-9. PubMed ID: 375221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomously replicating sequences in Saccharomyces cerevisiae.
    Chan CS; Tye BK
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6329-33. PubMed ID: 7005897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmid recovery from transformants and the isolation of chromosomal DNA segments improving plasmid replication in Neurospora crassa.
    Paietta J; Marzluf GA
    Curr Genet; 1985; 9(5):383-8. PubMed ID: 2967124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric plasmid that replicates autonomously in both Escherichia coli and Neurospora crassa.
    Hughes K; Case ME; Geever R; Vapnek D; Giles NH
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1053-7. PubMed ID: 6302666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmids from Staphylococcus aureus replicate in yeast Saccharomyces cerevisiae.
    Goursot R; Goze A; Niaudet B; Ehrlich SD
    Nature; 1982 Jul; 298(5873):488-90. PubMed ID: 6283393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene.
    Hsiao CL; Carbon J
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3829-33. PubMed ID: 386351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random AT library: autonomously replicating sequence (ARS) activity of chemically synthesized random sequences for transformation of nonconventional yeast species.
    Fukuhara H
    FEMS Yeast Res; 2006 Dec; 6(8):1281-7. PubMed ID: 17156025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous replication sequences in the maxicircle kinetoplast DNA of Leishmania tarentolae.
    Hughes D; Simpson L; Kayne PS; Neckelmann N
    Mol Biochem Parasitol; 1984 Nov; 13(3):263-75. PubMed ID: 6396515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of the stability of hybrid plasmids replicating in Saccharomyces cerevisiae due to DNA fragments from polyoma virus].
    Oganesian NA; Chepurnoĭ AI; Vel'kov VV; Kopylova-Sviridova TN; Fodor II
    Mol Biol (Mosk); 1984; 18(1):21-9. PubMed ID: 6323973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Formation of ARS-independent miniplasmids upon transformation of yeast Pichia methanolica with DNA molecules containing "transforming" and "nontransforming" genes].
    Tarutina MG; Tolstorukov II
    Genetika; 2002 Nov; 38(11):1451-62. PubMed ID: 12500670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of Dictyostelium discoideum transformants and analysis of vector maintenance using live bacteria resistant to G418.
    Hughes JE; Podgorski GJ; Welker DL
    Plasmid; 1992 Jul; 28(1):46-60. PubMed ID: 1518912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of chromosomal origins of replication in yeast.
    Beach D; Piper M; Shall S
    Nature; 1980 Mar; 284(5752):185-7. PubMed ID: 6987527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One strand of ars189 from the maxicircle of Crithidia fasciculata transforms Saccharomyces cerevisiae more efficiently than its complementary strand as a single stranded DNA.
    Kim R; Ray DS
    Gene; 1985; 40(2-3):285-90. PubMed ID: 3007294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA-mediated transformation system for Dictyostelium discoideum.
    Hirth KP; Edwards CA; Firtel RA
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7356-60. PubMed ID: 6296830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.