These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6449509)

  • 21. Interaction of potassium and magnesium with the high affinity calcium-binding sites of the sarcoplasmic reticulum calcium-ATPase.
    Moutin MJ; Dupont Y
    J Biol Chem; 1991 Mar; 266(9):5580-6. PubMed ID: 1826001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of coupling ratios of the calcium pump of sarcoplasmic reticulum by pulse methods.
    Meltzer S; Berman MC
    Anal Biochem; 1984 May; 138(2):458-64. PubMed ID: 6234821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase: changes in catalytic and transport sites during phosphoenzyme hydrolysis.
    Danko S; Yamasaki K; Daiho T; Suzuki H
    J Biol Chem; 2004 Apr; 279(15):14991-8. PubMed ID: 14754887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles.
    Souza DO; de Meis L
    J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Order of release of ADP and Pi from phosphoenzyme with bound ADP of Ca2+-dependent ATPase from sarcoplasmic reticulum and of Na+, K+-dependent ATPase studied by ADP-inhibition patterns.
    Sakamoto J; Tonomura Y
    J Biochem; 1980 Jun; 87(6):1721-7. PubMed ID: 6249798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The thermodynamic efficiency of the Ca2+-Mg2+-ATPase is one hundred percent.
    Trevorrow K; Haynes DH
    J Bioenerg Biomembr; 1984 Feb; 16(1):53-9. PubMed ID: 6152629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of hydrolysis of phosphorylated Ca2+,Mg2+-ATPase of the sarcoplasmic reticulum by Ca2+ inside and outside the vesicles.
    Daiho T; Takisawa H; Yamamoto T
    J Biochem; 1985 Feb; 97(2):643-53. PubMed ID: 3159720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum.
    Lau YH
    Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnesium and manganese ions modulate Ca2+ uptake and its energetic coupling in sarcoplasmic reticulum.
    Gomes da Costa A; Madeira VM
    Arch Biochem Biophys; 1986 Aug; 249(1):199-206. PubMed ID: 2943223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump.
    de Meis L
    J Biol Chem; 1976 Apr; 251(7):2055-62. PubMed ID: 5437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of stoichiometry of the sarcoplasmic reticulum calcium pump may enhance thermodynamic efficiency.
    Gafni A; Boyer PD
    Proc Natl Acad Sci U S A; 1985 Jan; 82(1):98-101. PubMed ID: 3155860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective inhibition by lasalocid of hydrolysis of the ADP-insensitive phosphoenzyme in the catalytic cycle of sarcoplasmic reticulum Ca2(+)-ATPase.
    Kawashima T; Hara H; Kanazawa T
    J Biol Chem; 1990 Jul; 265(19):10993-9. PubMed ID: 2141607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies.
    Seiler S; Fleischer S
    J Biol Chem; 1982 Nov; 257(22):13862-71. PubMed ID: 6292211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge changes in sarcoplasmic reticulum and Ca2+-ATPase induced by calcium binding and release: a study using lipophilic ions.
    Levitsky DO; Loginov VA; Lebedev AV
    Membr Biochem; 1986; 6(4):291-307. PubMed ID: 2952866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium permeability of sarcoplasmic reticulum. Mg2+ is not countertransported during ATP-dependent Ca2+ uptake by sarcoplasmic reticulum.
    Salama G; Scarpa A
    J Biol Chem; 1985 Sep; 260(21):11697-705. PubMed ID: 3930482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP regulation of calcium transport in back-inhibited sarcoplasmic reticulum vesicles.
    de Meis L; Sorenson MM
    Biochim Biophys Acta; 1989 Sep; 984(3):373-8. PubMed ID: 2528377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ratio of hydrolysis and synthesis of ATP by the sarcoplasmic reticulum ATPase in the absence of a Ca2+ concentration gradient.
    Scofano HM; de Meis L
    J Biol Chem; 1981 May; 256(9):4282-5. PubMed ID: 6111563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.