These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6449509)

  • 41. The effects of storage of sarcoplasmic reticulum fragments on the Ca2+, Mg2+-ATPase.
    Nakamura J; Konishi K
    J Biochem; 1978 Jun; 83(6):1731-5. PubMed ID: 149789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A model for the uptake and release of Ca2+ by sarcoplasmic reticulum.
    Gould GW; McWhirter JM; East JM; Lee AG
    Biochem J; 1987 Aug; 245(3):739-49. PubMed ID: 2959279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energy interconversion in sarcoplasmic reticulum vesicles in the presence of Ca2+ and Sr2+ gradients.
    Guimarães-Motta H; Sande-Lemos MP; de Meis L
    J Biol Chem; 1984 Jul; 259(14):8699-705. PubMed ID: 6235215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. pH-dependent inhibitory effects of Ca2+, Mg2+, and K+ on Ca2+ efflux mediated by sarcoplasmic reticulum ATPase.
    Wolosker H; de Meis L
    Am J Physiol; 1994 May; 266(5 Pt 1):C1376-81. PubMed ID: 8203500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca2+-ATPase vesicles.
    Navarro J; Essig A
    Biophys J; 1984 Dec; 46(6):709-17. PubMed ID: 6240285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. K(+)- and Mg2(+)-dependent hydrolysis of acetyl phosphate catalyzed by the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum.
    Chini EN; Montero-Lomeli M; de Meis L
    Biochim Biophys Acta; 1990 Nov; 1030(1):152-6. PubMed ID: 2148270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum.
    Dupont Y
    Eur J Biochem; 1980 Aug; 109(1):231-8. PubMed ID: 6447598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M; Finegan JA; Katz AM
    J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The enhancement of Ca2+ efflux from sarcoplasmic reticulum vesicles by urea.
    Chini EN; de Faria FO; Cardoso CM; de Meis L
    Arch Biochem Biophys; 1992 Nov; 299(1):73-6. PubMed ID: 1280064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias.
    Hilden S; Hokin LE
    J Biol Chem; 1975 Aug; 250(16):6296-303. PubMed ID: 125752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Demonstration of two different reactive sulfhydryl groups in the ATP-binding sites of Ca2+-ATPase of sarcoplasmic reticulum by disulfides of thioinosine triphosphates.
    Patzelt-Wenczler R; Kreickmann H; Schoner W
    Eur J Biochem; 1980 Aug; 109(1):167-75. PubMed ID: 6447597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The modulation of Ca2+ binding to sarcoplasmic reticulum ATPase by ATP analogues is pH-dependent.
    Mintz E; Mata AM; Forge V; Passafiume M; Guillain F
    J Biol Chem; 1995 Nov; 270(45):27160-4. PubMed ID: 7592971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A fast passive Ca2+ efflux mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles.
    Gould GW; McWhirter JM; East JM; Lee AG
    Biochim Biophys Acta; 1987 Nov; 904(1):45-54. PubMed ID: 2959321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconstitution experiments provide no evidence for a role for the 53-kDa glycoprotein in coupling Ca2+ transport to ATP hydrolysis by the (Ca(2+)-Mg2+)-ATPase in sarcoplasmic reticulum.
    Grimes EA; Burgess AJ; East JM; Lee AG
    Biochim Biophys Acta; 1991 May; 1064(2):335-42. PubMed ID: 1827997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of solubilization on adenosine 5'-triphosphate induced calcium release from purified sarcoplasmic reticulum calcium adenosinetriphosphatase.
    Dean WL; Gray RD
    Biochemistry; 1983 Jan; 22(2):515-9. PubMed ID: 6218822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ADP- and Mg2+-reactive calcium complex of the phosphoenzyme in skeletal sarcoplasmic reticulum Ca2+-ATPase.
    Nakamura J
    Biochim Biophys Acta; 1983 May; 723(2):182-90. PubMed ID: 6221757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The rate of Ca2+ translocation by sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase measured with intravesicular arsenazo III.
    Beeler T; Keffer J
    Biochim Biophys Acta; 1984 Jun; 773(1):99-105. PubMed ID: 6145443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of gradients of monovalent cations on active transport of Ca2+ in the sarcoplasmic reticulum and proteoliposomes].
    Tugaĭ VA; Diadiusha GP; Usatiuk PV; Zemlianaia NN
    Ukr Biokhim Zh (1978); 1988; 60(1):69-74. PubMed ID: 3363678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.