These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 6450310)
1. Transcription of bacteriophage Mu. I. Hybridization analysis of RNA made in vitro. van Meeteren R; van de Putte P Mol Gen Genet; 1980; 179(1):177-83. PubMed ID: 6450310 [No Abstract] [Full Text] [Related]
2. Minute amounts of RNA are synthesized from several regions of the bacteriophage Mu DNA during the lysogenic state. Barron C; Bade EG Biochem Biophys Res Commun; 1989 Nov; 165(1):512-8. PubMed ID: 2531583 [TBL] [Abstract][Full Text] [Related]
3. Transcription of bacteriophage Mu. II. Transcription of the repressor gene. van Meeteren R; Giphart-Gassler M; van de Putte P Mol Gen Genet; 1980; 179(1):185-9. PubMed ID: 6450311 [TBL] [Abstract][Full Text] [Related]
4. Transposition of bacteriophage mu DNA: expression of the A and B proteins from lambda pL and analysis of infecting mu DNA. Chaconas G; Gloor G; Miller JL; Kennedy DL; Giddens EB; Nagainis CR Cold Spring Harb Symp Quant Biol; 1984; 49():279-84. PubMed ID: 6099242 [No Abstract] [Full Text] [Related]
5. Transcriptional mapping of the bacteriophage Mu DNA. Barron C; Bade EG J Gen Virol; 1988 Feb; 69 ( Pt 2)():385-93. PubMed ID: 2963090 [TBL] [Abstract][Full Text] [Related]
6. Transposition of bacteriophage Mu: properties of lambda phages containing both ends of Mu. Howe MM; Schumm JW Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():337-46. PubMed ID: 6271481 [No Abstract] [Full Text] [Related]
7. Correlation of the genetic and physical maps in the central region of the bacteriophage Mu genome. Schumm JW; Moore DD; Blattner FR; Howe MM Virology; 1980 Aug; 105(1):185-95. PubMed ID: 6251604 [No Abstract] [Full Text] [Related]
8. Kinetics and regulation of transcription of bacteriophage Mu. Marrs CF; Howe MM Virology; 1990 Jan; 174(1):192-203. PubMed ID: 2136777 [TBL] [Abstract][Full Text] [Related]
9. Role of R loops in recA-independent homologous recombination of bacteriophage lambda. Matsumoto T; Ikeda H J Virol; 1983 Mar; 45(3):971-6. PubMed ID: 6220161 [TBL] [Abstract][Full Text] [Related]
10. Site-specific recombinases: changing partners and doing the twist. Sadowski P J Bacteriol; 1986 Feb; 165(2):341-7. PubMed ID: 3003022 [No Abstract] [Full Text] [Related]
11. Control of transcription termination: a rho-dependent termination site in bacteriophage lambda. Court D; Brady C; Rosenberg M; Wulff DL; Behr M; Mahoney M; Izumi SU J Mol Biol; 1980 Apr; 138(2):231-54. PubMed ID: 6447791 [No Abstract] [Full Text] [Related]
12. Electron microscopic analysis of transcription: mapping of initiation sites and direction of transcription. Brack C Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3164-8. PubMed ID: 158757 [TBL] [Abstract][Full Text] [Related]
13. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping. Waggoner BT; Marrs CF; Howe MM; Pato ML Virology; 1984 Jul; 136(1):168-85. PubMed ID: 6234699 [TBL] [Abstract][Full Text] [Related]
14. Regulation of int gene transcription by bacteriophage lambda. Location of the RNA start generated by an int constitutive mutation. Abraham J; Echols H J Mol Biol; 1981 Feb; 146(1):157-65. PubMed ID: 6455532 [No Abstract] [Full Text] [Related]
15. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Mizuuchi K; Adzuma K Cell; 1991 Jul; 66(1):129-40. PubMed ID: 1649006 [TBL] [Abstract][Full Text] [Related]
16. Substrate and enzyme requirements for in vitro site-specific recombination in bacteriophage mu. Kahmann R; Rudt F; Mertens G Cold Spring Harb Symp Quant Biol; 1984; 49():285-94. PubMed ID: 6241550 [No Abstract] [Full Text] [Related]
17. The mom gene of bacteriophage Mu. Kahmann R Curr Top Microbiol Immunol; 1984; 108():29-47. PubMed ID: 6232116 [No Abstract] [Full Text] [Related]
18. Bacteriophage Mu sites and functions involved in the inhibition of lambda::mini-Mu growth. Glasgow AC; Miller JL; Howe MM Virology; 1990 Jul; 177(1):95-105. PubMed ID: 2141207 [TBL] [Abstract][Full Text] [Related]
19. Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination. Nash HA Annu Rev Genet; 1981; 15():143-67. PubMed ID: 6461289 [No Abstract] [Full Text] [Related]
20. In vitro transcription from the b2 region of bacteriophage lambda. Rosenvold EC; Calva E; Burgess RR; Szybalski W Virology; 1980 Dec; 107(2):476-87. PubMed ID: 6450480 [No Abstract] [Full Text] [Related] [Next] [New Search]