These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6450313)

  • 1. Characterisation of mutants of Escherichia coli K12, selected by resistance to streptozotocin.
    Lengeler J
    Mol Gen Genet; 1980; 179(1):49-54. PubMed ID: 6450313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Ammer J; Brennenstuhl M; Schindler P; Höltje JV; Zähner H
    Antimicrob Agents Chemother; 1979 Dec; 16(6):801-7. PubMed ID: 161156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation.
    Vogler AP; Lengeler JW
    Mol Gen Genet; 1989 Oct; 219(1-2):97-105. PubMed ID: 2693951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K 12 and other sensitive bacteria.
    Lengeler J
    Arch Microbiol; 1980 Dec; 128(2):196-203. PubMed ID: 6452103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Streptococcus mutans by the antibiotic streptozotocin: mechanisms of uptake and the selection of carbohydrate-negative mutants.
    Jacobson GR; Poy F; Lengeler JW
    Infect Immun; 1990 Feb; 58(2):543-9. PubMed ID: 2137113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
    White RJ
    Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An examination of the inhibitory effects of N-iodoacetylglucosamine on Escherichia coli and isolation of resistant mutants.
    White RJ; Kent PW
    Biochem J; 1970 Jun; 118(1):81-7. PubMed ID: 4919471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of IIIGlc-defects by enzymes IINag and IIBgl of the PEP:carbohydrate phosphotransferase system.
    Vogler AP; Broekhuizen CP; Schuitema A; Lengeler JW; Postma PW
    Mol Microbiol; 1988 Nov; 2(6):719-26. PubMed ID: 3062308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino-sugar transport systems of Escherichia coli K12.
    Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1980 Apr; 117(2):369-76. PubMed ID: 6252281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase.
    Rogers MJ; Ohgi T; Plumbridge J; Söll D
    Gene; 1988; 62(2):197-207. PubMed ID: 3284790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [ptsS: a new regulatory element of the fructose operon in Escherichia coli].
    Bol'shakova TN; Erlagaeva RS; Kyzylova NA; Germanovich VN
    Mol Gen Mikrobiol Virusol; 1988 Feb; (2):41-4. PubMed ID: 3287147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of mutations affecting the expression of catabolite-sensitive operons in Escherichia coli K12 mutants defective in the HPr-component of the carbohydrate transport system].
    Erlagaeva RS; Bol'shakova TN; Kyzylova NA; Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1987 Feb; (2):43-7. PubMed ID: 3553910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite repression in Escherichia coli K12 mutants defective in glucose transport.
    Gershanovitch VN; Yourovitskaya NV; Komissarova LV; Bolshakova TN; Erlagaeva RS; Bourd GI
    Mol Gen Genet; 1975 Sep; 140(1):81-90. PubMed ID: 1102954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications.
    Riemann L; Azam F
    Appl Environ Microbiol; 2002 Nov; 68(11):5554-62. PubMed ID: 12406749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two kinds of mutants defective in multiple carbohydrate utilization isolated from in vitro fosfomycin-resistant strains of Escherichia coli K--12.
    Tsuruoka T; Miyata A; Yamada Y
    J Antibiot (Tokyo); 1978 Mar; 31(3):192-201. PubMed ID: 206529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin.
    Rakonjac J; Milic M; Savic DJ
    Mol Gen Genet; 1991 Aug; 228(1-2):307-11. PubMed ID: 1886615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-Añorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-alpha-d-glucoside transport.
    Bourd GI; Erlagaeva RS; Bolshakova TN; Gershanovitch VN
    Eur J Biochem; 1975 May; 53(2):419-27. PubMed ID: 1095369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of cysK mutants of Escherichia coli K12.
    Wiater A; Hulanicka D
    Acta Biochim Pol; 1979; 26(1-2):21-8. PubMed ID: 388955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.