These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 6450725)

  • 1. T suppressor cells and suppressor factor which act at the efferent stage of the contact sensitivity skin reaction: their production by mice injected with water-soluble, chemically reactive derivatives of oxazolone and picryl chloride.
    Asherson GL; Zembala M
    Immunology; 1980 Dec; 41(4):1005-13. PubMed ID: 6450725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalence of conventional anti-picryl T suppressor factor in the contact sensitivity system and monoclonal anti-NP TsF3: their final non-specific effect via the T acceptor cell.
    Asherson GL; Dorf ME; Colizzi V; Zembala M; James BM
    Immunology; 1984 Nov; 53(3):491-7. PubMed ID: 6333385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotype-like suppression of T cell-mediated immunity in vivo. II. Suppression of the early component of contact sensitivity by a Ly-2+ T cell-derived suppressor factor that binds to contact sensitivity-initiating, antigen-specific, Ly-1+ T cell-derived factors that are of different antigen specificities.
    Ptak W; Bereta M; Ptak M; Askenase PW
    J Immunol; 1986 Mar; 136(5):1564-70. PubMed ID: 2419405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of the contact sensitivity skin reaction: T-suppressor afferent cell blocks the production of antigen-specific T-helper factor.
    Asherson GL; Colizzi V; James BM
    Immunology; 1985 Mar; 54(3):521-6. PubMed ID: 2579026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-specific regulatory mechanism of contact sensitivity: induction of macrophage-like suppressor cells and their factors with hapten-conjugated lymphoid cells.
    Nakano Y; Nakano K
    Immunology; 1985 Feb; 54(2):297-305. PubMed ID: 3155704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of contact sensitivity to picryl chloride. Interaction between T suppressor auxiliary cells, suppressor factors and macrophages.
    Marcinkiewicz J
    Arch Immunol Ther Exp (Warsz); 1983; 31(6):849-55. PubMed ID: 6234863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of I-J in the suppressor T-cell circuit which influences the effector stage of contact sensitivity: antigen together with syngeneic I-J region determinants induces and activates T suppressor cells.
    Colizzi V; Asherson GL; James BM
    Immunology; 1983 May; 49(1):191-9. PubMed ID: 6220964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orally induced tolerance generates an efferently acting suppressor T cell and an acceptor T cell that together down-regulate contact sensitivity.
    Gautam SC; Battisto JR
    J Immunol; 1985 Nov; 135(5):2975-83. PubMed ID: 2413107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the ability of T cells to suppress the induction and expression of contact sensitivity.
    Thomas WR; Watkins MC; Asherson GL
    Immunology; 1981 Jan; 42(1):53-9. PubMed ID: 6450730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunogenic cells in the regional lymph nodes after painting with the contact sensitizers picryl chloride and oxazolone: evidence for the presence of IgM antibody on their surface.
    Asherson GL; Colizzi V; Watkins MC
    Immunology; 1983 Mar; 48(3):561-9. PubMed ID: 6826205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody responses to contact sensitizing agents. Effect of sensitized cells.
    Thomas WR; Watkins MC; Wood PJ; Asherson GL
    Immunology; 1978 Mar; 34(3):411-7. PubMed ID: 305889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The purification of specific anti-picryl T suppressor factor which depresses the passive transfer of contact sensitivity: affinity chromatography on antigen and Concanavalin A sepharose and specific elution with hapten and alpha-methylmannoside.
    Asherson GL; Zembala M; Noworolski J
    Immunology; 1978 Dec; 35(6):1051-6. PubMed ID: 310805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of contact hypersensitivity and tolerance in vivo and in vitro. I. Basic characteristics of the reactions and confirmation of an immune response in tolerant mice.
    Noonan FP; Halliday WJ
    Int Arch Allergy Appl Immunol; 1978; 56(6):523-32. PubMed ID: 631921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressor T cells which block the induction of cytotoxic T cells in vivo.
    Tagart VB; Thomas WR; Asherson GL
    Immunology; 1978 Jun; 34(6):1109-16. PubMed ID: 308038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the T suppressor circuit of delayed-type hypersensitivity by interferon.
    Knop J; Stremmer R; Taborski U; Freitag W; de Maeyer-Guignard J; Macher E
    J Immunol; 1984 Nov; 133(5):2412-6. PubMed ID: 6237149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of cyclophosphamide and irradiation on cells which suppress contact sensitivity in the mouse.
    Zembala M; Asherson GL
    Clin Exp Immunol; 1976 Mar; 23(3):554-61. PubMed ID: 1084814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed-type hypersensitivity is mediated by a sequence of two different T cell activities.
    Van Loveren H; Askenase PW
    J Immunol; 1984 Nov; 133(5):2397-401. PubMed ID: 6332849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact sensitivity and the DNA response in mice to high and low doses of oxazolone: low dose unresponsiveness following painting and feeding and its prevention by pretreatment with cyclophosphamide.
    Asherson GL; Perera MA; Thomas WR
    Immunology; 1979 Mar; 36(3):449-59. PubMed ID: 312260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonspecific regulatory mechanism of contact sensitivity: nonspecific suppressor factor suppresses the antigen-presenting activity of dendritic cells to induce contact sensitivity.
    Nakano Y; Hori S; Ihara M
    Cell Immunol; 1994 Oct; 158(1):228-40. PubMed ID: 8087867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desensitization in vitro: the role of T-suppressor cells, T-suppressor factor and T-acceptor cells in the inhibition of the passive transfer of contact sensitivity to picryl chloride by exposure to antigen in vitro.
    Zembala M; Asherson GL; Colizzi V; Watkins MC
    Immunology; 1982 Dec; 47(4):605-15. PubMed ID: 6216199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.