BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6450765)

  • 1. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Evidence for a hydrolysis cycle not coupled to intermediate acyl phosphate formation and calcium translocation.
    Van Winkle WB; Tate CA; Bick RJ; Entman ML
    J Biol Chem; 1981 Mar; 256(5):2268-74. PubMed ID: 6450765
    [No Abstract]   [Full Text] [Related]  

  • 2. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W; Hasselbach W
    Eur J Biochem; 1981 Jun; 116(3):601-8. PubMed ID: 7262078
    [No Abstract]   [Full Text] [Related]  

  • 3. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M; Finegan JA; Katz AM
    J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roussel award for cardiology. The mechanism of nucleotide induced calcium translocation across sarcoplasmic reticulum membranes: evidence for a non-translocated intermediate pool of calcium.
    Entman ML; Bick R; Chu A; Van Winkle WB; Tate CA
    J Mol Cell Cardiol; 1986 Aug; 18(8):781-91. PubMed ID: 3018265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncoupling of calcium control and phosphohydrolase activity in sarcoplasmic reticulum vesicles.
    Inesi G; Kurzmack M; Nakamoto R; de Meis L; Bernhard SA
    J Biol Chem; 1980 Jul; 255(13):6040-3. PubMed ID: 6446552
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of TRIS and HEPES on function of rabbit muscle light sarcoplasmic reticulum.
    Selinsky BS; Messana AD; Scherer W; Yeagle PL
    Membr Biochem; 1987-1988; 7(2):107-13. PubMed ID: 2970003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The calcium transport of sarcoplasmic reticulum.
    Martonosi AN; Chyn TL; Schibeci A
    Ann N Y Acad Sci; 1978 Apr; 307():148-59. PubMed ID: 152086
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase.
    Inesi G
    Soc Gen Physiol Ser; 1987; 41():231-55. PubMed ID: 2951851
    [No Abstract]   [Full Text] [Related]  

  • 9. [Transport of Ca2+ in the sarcoplasmic reticulum of skeletal muscles in hyperthermia].
    Avetisova NL; Fedorov AN; Seferova RI
    Ukr Biokhim Zh (1978); 1992; 64(1):93-7. PubMed ID: 1387748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of stimulation of calcium transport in cardiac sarcoplasmic reticulum preparations by calmodulin.
    Katz S
    Ann N Y Acad Sci; 1980; 356():267-78. PubMed ID: 6112946
    [No Abstract]   [Full Text] [Related]  

  • 11. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban.
    Tada M; Yamada M; Kadoma M; Inui M; Ohmori F
    Mol Cell Biochem; 1982 Jul; 46(2):73-95. PubMed ID: 6287209
    [No Abstract]   [Full Text] [Related]  

  • 13. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Further evidence for an alternative substrate hydrolysis cycle and the effect of calcium NTPase purification.
    Bick RJ; Van Winkle WB; Tate CA; Entman ML
    J Biol Chem; 1983 Apr; 258(7):4447-52. PubMed ID: 6300087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acylphosphates on Ca2+ uptake by sarcoplasmic reticulum vesicles.
    Liguri G; Stefani M; Berti A; Nassi P; Ramponi G
    Arch Biochem Biophys; 1980 Apr; 200(2):357-63. PubMed ID: 7436409
    [No Abstract]   [Full Text] [Related]  

  • 15. [Energy-dependent redistribution of a lipophilic anion in sarcoplasmic reticulum vesicles and Ca2-ATPase molecules].
    Loginov VA; Levitskiĭ DO; Lebedev AV
    Biokhimiia; 1984 Jun; 49(6):958-64. PubMed ID: 6235862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes.
    Martonosi A; Lagwinska E; Oliver M
    Ann N Y Acad Sci; 1974 Feb; 227():549-67. PubMed ID: 4524344
    [No Abstract]   [Full Text] [Related]  

  • 17. Ketoconazole, an inhibitor of calcium transport in skeletal muscle sarcoplasmic reticulum.
    Cheah AM
    Experientia; 1982 Apr; 38(4):445-8. PubMed ID: 6123442
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Sarcoplasmic reticulum of skeletal muscles and calcium pump].
    Kawakita M
    Tanpakushitsu Kakusan Koso; 1988 Sep; 33(12):1915-26. PubMed ID: 2978728
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxygen exchanges catalyzed by and the mechanism of acyl phosphate formation in transport ATPases.
    Dahms AS; Boyer PD
    Ann N Y Acad Sci; 1974; 242(0):133-8. PubMed ID: 4279583
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.