BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 6451238)

  • 1. Control of energy transformation of mitochondria. Analysis by a quantitative model.
    Bohnensack R
    Biochim Biophys Acta; 1981 Jan; 634(1):203-18. PubMed ID: 6451238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of regulation of oxidative phosphorylation in intact mitochondria.
    Bohnensack R; Kunz W
    Acta Biol Med Ger; 1978; 37(1):97-112. PubMed ID: 706931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of mitochondrial energy transduction.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(6):853-62. PubMed ID: 2931077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria.
    Vignais PV; Vignais PM; Doussiere J
    Biochim Biophys Acta; 1975 Feb; 376(2):219-30. PubMed ID: 123160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator.
    Bohnensack R
    J Bioenerg Biomembr; 1982 Feb; 14(1):45-61. PubMed ID: 6292176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model to study short-term regulation of mitochondrial energy transduction.
    Holzhütter HG; Henke W; Dubiel W; Gerber G
    Biochim Biophys Acta; 1985 Nov; 810(2):252-68. PubMed ID: 2865968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment.
    Bohnensack R; Küster U; Letko G
    Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria.
    Wanders RJ; Groen AK; Van Roermund CW; Tager JM
    Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of intramitochondrial adenine nucleotides and inorganic phosphate in oxidative phosphorylation of extramitochondrially added adenosine-5'-diphosphate.
    Hartung KJ; Böhme G; Kunz W
    Biomed Biochim Acta; 1983; 42(1):15-26. PubMed ID: 6224484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria.
    Schild L; Gellerich FN
    Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP.
    BeltrandelRio H; Wilson JE
    Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brown adipose tissue mitochondria: recoupling caused by substrate level phosphorylation and extramitochondrial adenosine phosphates.
    Rafael J; Wrabetz E
    Eur J Biochem; 1976 Jan; 61(2):551-61. PubMed ID: 174912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio.
    Küster U; Bohnensack R; Kunz W
    Biochim Biophys Acta; 1976 Aug; 440(2):391-402. PubMed ID: 952975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline.
    Soboll S; Bünger R
    Hoppe Seylers Z Physiol Chem; 1981 Feb; 362(2):125-32. PubMed ID: 7216167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the intramitochondrial adenine nucleotides as intermediates in the uncoupler-induced hydrolysis of extramitochondrial ATP.
    Out TA; Valeton E; Kemp A
    Biochim Biophys Acta; 1976 Sep; 440(3):697-710. PubMed ID: 134745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between extramitochondrial and intramitochondrial ATP-consuming processes.
    Letko G; Küster U
    Acta Biol Med Ger; 1979; 38(10):1379-85. PubMed ID: 162025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between extra- and intramitochondrial ATP/ADP ratios in rat liver mitochondria.
    Brawand F; Folly G; Walter P
    Biochim Biophys Acta; 1980 May; 590(3):285-9. PubMed ID: 6445752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.