These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6451810)

  • 21. A remarkably stable phosphorylated form of Ca2+-ATPase prepared from Ca2+-loaded and fluorescein isothiocyanate-labeled sarcoplasmic reticulum vesicles.
    Champeil P; Henao F; Lacapere JJ; McIntosh DB
    J Biol Chem; 2001 Feb; 276(8):5795-803. PubMed ID: 11067849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of Mg2+ and Ca2+ in the simultaneous binding of vanadate and ATP at the phosphorylation site of sarcoplasmic reticulum Ca2+-ATPase.
    Andersen JP; Møller JV
    Biochim Biophys Acta; 1985 Apr; 815(1):9-15. PubMed ID: 3157403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid filtration study of the phosphorylation-dependent dissociation of calcium from transport sites of purified sarcoplasmic reticulum ATPase and ATP modulation of the catalytic cycle.
    Champeil P; Guillain F
    Biochemistry; 1986 Nov; 25(23):7623-33. PubMed ID: 2948563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of phosphatidic acid and phosphatidylserine with the Ca2+-ATPase of sarcoplasmic reticulum and the mechanism of inhibition.
    Dalton KA; East JM; Mall S; Oliver S; Starling AP; Lee AG
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):637-46. PubMed ID: 9445393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct demonstration of structural changes in soluble, monomeric Ca2+-ATPase associated with Ca2+ release during the transport cycle.
    Andersen JP; Jørgensen PL; Møller JV
    Proc Natl Acad Sci U S A; 1985 Jul; 82(14):4573-7. PubMed ID: 3161073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent.
    Myung J; Jencks WP
    Biochemistry; 1994 Jul; 33(29):8775-85. PubMed ID: 8038168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of inter-binding-site distances in sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase under occluded and non-occluded conditions.
    Herrmann TR; Shamoo AE
    Mol Cell Biochem; 1988; 82(1-2):55-8. PubMed ID: 2972914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The rate of Ca2+ translocation by sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase measured with intravesicular arsenazo III.
    Beeler T; Keffer J
    Biochim Biophys Acta; 1984 Jun; 773(1):99-105. PubMed ID: 6145443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ADP- and Mg2+-reactive calcium complex of the phosphoenzyme in skeletal sarcoplasmic reticulum Ca2+-ATPase.
    Nakamura J
    Biochim Biophys Acta; 1983 May; 723(2):182-90. PubMed ID: 6221757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme phosphorylation with inorganic phosphate causes Ca2+ dissociation from sarcoplasmic reticulum adenosinetriphosphatase.
    de Meis L; Inesi G
    Biochemistry; 1985 Feb; 24(4):922-5. PubMed ID: 3158346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics of the calcium-transporting ATPase.
    Pickart CM; Jencks WP
    J Biol Chem; 1984 Feb; 259(3):1629-43. PubMed ID: 6229538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pH dependence of the Ca2+, Mg2+-ATPase of sarcoplasmic reticulum: evidence that the Ca2+ translocator bears a doubly negative charge.
    Haynes DH; Mandveno A
    J Membr Biol; 1983; 74(1):25-40. PubMed ID: 6134838
    [No Abstract]   [Full Text] [Related]  

  • 34. NMR studies identify four intermediate states of ATPase and the ion transport cycle of sarcoplasmic reticulum Ca2+-ATPase.
    Klemens MR; Grisham CM
    FEBS Lett; 1988 Sep; 237(1-2):4-8. PubMed ID: 2971569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model.
    Mahaney JE; Thomas DD; Froehlich JP
    Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mutual binding exclusion mechanism in active transport across biological membranes.
    Inesi G
    Cell Biophys; 1987 Dec; 11():269-77. PubMed ID: 2450663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum.
    Gould GW; East JM; Froud RJ; McWhirter JM; Stefanova HI; Lee AG
    Biochem J; 1986 Jul; 237(1):217-27. PubMed ID: 2948490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Mg2+ concentration on Ca2+ uptake kinetics and structure of the sarcoplasmic reticulum membrane.
    Asturias FJ; Blasie JK
    Biophys J; 1989 Apr; 55(4):739-53. PubMed ID: 2524225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Ca2+ transport by the membrane-bound monomeric form of Ca-ATPase of sarcoplasmic reticulum].
    Ritov VB; Shcherbakova NS
    Biull Eksp Biol Med; 1982 Apr; 93(4):21-3. PubMed ID: 6211201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Equilibrium and kinetic studies of calcium transport and ATPase activity in sarcoplasmic reticulum.
    Inesi G; Kurzmack M; Kosk-Kosicka D; Lewis D; Scofano H; Guimaraes-Motta H
    Z Naturforsch C Biosci; 1982; 37(7-8):685-91. PubMed ID: 6215782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.