These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6452264)

  • 1. Translation of Zea mays endosperm sucrose-synthase mRNA in vitro.
    Wöstemeyer J; Behrens U; Merckelbach A; Müller M; Starlinger P
    Eur J Biochem; 1981; 114(1):39-44. PubMed ID: 6452264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cDNA clone from Zea mays endosperm sucrose synthetase mRNA.
    Geiser M; Döring HP; Wöstemeyer J; Behrens U; Tillmann E; Starlinger P
    Nucleic Acids Res; 1980 Dec; 8(24):6175-88. PubMed ID: 6258164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation of the mRNA for rabbit uteroglobin in cell-free systems. Evidence for a precursor protein.
    Beato M; Nieto A
    Eur J Biochem; 1976 Apr; 64(1):15-25. PubMed ID: 1278150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic regulation of rice alpha-amylase and sucrose synthase genes in planta.
    Karrer EE; Rodriguez RL
    Plant J; 1992 Jul; 2(4):517-23. PubMed ID: 1344888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and in vitro translation of zein messenger ribonucleic acid.
    Larkins BA; Jones RA; Tsai CY
    Biochemistry; 1976 Dec; 15(25):5506-11. PubMed ID: 999825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of sucrose-phosphate synthase (SPS) in non-photosynthetic tissues of maize.
    Im KH
    Mol Cells; 2004 Jun; 17(3):404-9. PubMed ID: 15232213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic fractionation and translation in vitro of poly(rA)-containing RNA from maize endosperm. Evidence of two mRNAs coding for zein protein.
    Wienand U; Feix G
    Eur J Biochem; 1978 Dec; 92(2):605-11. PubMed ID: 738282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis.
    Chourey PS; Taliercio EW; Carlson SJ; Ruan YL
    Mol Gen Genet; 1998 Jul; 259(1):88-96. PubMed ID: 9738884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize.
    Chourey PS; Nelson OE
    Biochem Genet; 1976 Dec; 14(11-12):1041-55. PubMed ID: 1016220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression.
    Gallie DR; Young TE
    Plant Physiol; 1994 Nov; 106(3):929-39. PubMed ID: 7824660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for processing of maize catalase 2 and purification of its messenger RNA aided by translation of antibody-bound polysomes.
    Skadsen RW; Scandalios JG
    Biochemistry; 1986 Apr; 25(8):2027-32. PubMed ID: 3707929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms.
    Li J; Baroja-Fernández E; Bahaji A; Muñoz FJ; Ovecka M; Montero M; Sesma MT; Alonso-Casajús N; Almagro G; Sánchez-López AM; Hidalgo M; Zamarbide M; Pozueta-Romero J
    Plant Cell Physiol; 2013 Feb; 54(2):282-94. PubMed ID: 23292602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm.
    Cobb BG; Hannah LC
    Plant Physiol; 1988 Dec; 88(4):1219-21. PubMed ID: 16666447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima).
    Zhang L; Lin Q; Feng Y; Fan X; Zou F; Yuan DY; Zeng X; Cao H
    J Agric Food Chem; 2015 Jan; 63(3):929-42. PubMed ID: 25537355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota.
    Sebková V; Unger C; Hardegger M; Sturm A
    Plant Physiol; 1995 May; 108(1):75-83. PubMed ID: 7784526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free translational analysis of messenger ribonucleic acid coding for vitamin D-dependent rat renal calcium-binding protein.
    Pansini AR; Christakos S
    Endocrinology; 1985 Oct; 117(4):1652-60. PubMed ID: 2411531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of phospholipid transfer proteins from maize seedlings.
    Vergnolle C; Arondel V; Tchang F; Grosbois M; Guerbette F; Jolliot A; Kader JC
    Biochem Biophys Res Commun; 1988 Nov; 157(1):37-41. PubMed ID: 3196344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of messenger RNA specific for carcinoembryonic antigen.
    Zimmermann W; Friedrich R; Grunert F; Luckenbach GA; Thompson J; von Kleist S
    Ann N Y Acad Sci; 1983; 417():21-30. PubMed ID: 6200032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of low temperature stress on the expression of sucrose synthetase in spring and winter wheat plants. Development of a monoclonal antibody against wheat germ sucrose synthetase.
    Newsted WJ; Chibbar RN; Georges F
    Biochem Cell Biol; 1991 Jan; 69(1):36-41. PubMed ID: 1828354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular studies on mutations at the Shrunken locus in maize caused by the controlling element Ds.
    Fedoroff N; Mauvais J; Chaleff D
    J Mol Appl Genet; 1983; 2(1):11-29. PubMed ID: 6221058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.