BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6452941)

  • 1. Regulation of the F-ATPase from mitochondria of Vigna sinensis (L.) Savi cv. Pitiuba by spermine, spermidine, putrescine, Mg2+, Na+, and K+.
    Peter HW; Pinheiro MR; Silva Lima M
    Can J Biochem; 1981 Jan; 59(1):60-6. PubMed ID: 6452941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Mg2+, Na+ and K+ on the F1-ATPase of mitochondria of Vigna sinensis (L.) cv. seridó.
    Lima MS; Peter HW
    Int J Biochem; 1980; 11(5):401-5. PubMed ID: 6446469
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of polyamines on mitochondrial F-ATPase from Crithidia fasciculata and Trypanosoma cruzi.
    Rilo MC; Stoppani AO
    Biochem Mol Biol Int; 1993 Jan; 29(1):131-9. PubMed ID: 8490559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Na,K-ATPase from chick brain by polyamines.
    Heinrich-Hirsch B; Ahlers J; Peter HW
    Enzyme; 1977; 22(4):235-41. PubMed ID: 142008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polyamines on partial reactions of membrane (Na+ + K+)-ATPase.
    Quarfoth G; Ahmed K; Foster D
    Biochim Biophys Acta; 1978 Oct; 526(2):580-90. PubMed ID: 214129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polyamines on mitochondrial F1-ATPase catalyzed reactions.
    Igarashi K; Kashiwagi K; Kobayashi H; Ohnishi R; Kakegawa T; Nagasu A; Hirose S
    J Biochem; 1989 Aug; 106(2):294-8. PubMed ID: 2530210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na⁺,K⁺-ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): modulation of ATP hydrolysis by the biogenic amines spermidine and spermine.
    Garçon DP; Lucena MN; França JL; McNamara JC; Fontes CF; Leone FA
    J Membr Biol; 2011 Nov; 244(1):9-20. PubMed ID: 21972069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamines do not inhibit erythrocyte ATPase activities.
    Ballas SK; Clark MR; Mohandas N; Shohet SB
    Clin Chim Acta; 1983 Apr; 129(3):287-93. PubMed ID: 6303631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of polyamines with Mg(2+)-sensitive macroelectrodes and Mg2+ buffers.
    Günther T; Vormann J; McGuigan JA; Lüthi D; Gerber D
    Biochem Mol Biol Int; 1995 May; 36(1):51-7. PubMed ID: 7663422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.
    Chen H; Baron CB; Griffiths T; Greeley P; Coburn RF
    J Cell Physiol; 1998 Oct; 177(1):161-73. PubMed ID: 9731756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamines regulate phosphorylation-dephosphorylation kinetics in a crustacean gill (Na
    Lucena MN; Garçon DP; Fontes CF; McNamara JC; Leone FA
    Mol Cell Biochem; 2017 May; 429(1-2):187-198. PubMed ID: 28190171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines stimulate the binding of hexokinase type II to mitochondria.
    Kurokawa M; Yokoyama K; Ishibashi S
    Biochim Biophys Acta; 1983 Aug; 759(1-2):92-8. PubMed ID: 6882795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics.
    Zhang Y; Niu X; Brelidze TI; Magleby KL
    J Gen Physiol; 2006 Aug; 128(2):185-202. PubMed ID: 16847096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex.
    Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J
    Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines stimulate D-glucose transport in isolated renal brush-border membrane vesicles.
    Elgavish A; Wallace RW; Pillion DJ; Meezan E
    Biochim Biophys Acta; 1984 Oct; 777(1):1-8. PubMed ID: 6148964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible inhibition of (Na+, K+) ATPase by Mg2+, adenosine triphosphate, and K+.
    Fagan JB; Racker E
    Biochemistry; 1977 Jan; 16(1):152-8. PubMed ID: 137742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of activation of casein kinase II by polyamines and reversal of 2,3-bisphosphoglycerate inhibition.
    Hathaway GM; Traugh JA
    J Biol Chem; 1984 Jun; 259(11):7011-5. PubMed ID: 6586724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Na+, K+)-activated adenosinetriphosphatase of axonal membranes, cooperativity and control. Steady-state analysis.
    Gache C; Rossi B; Lazdunski M
    Eur J Biochem; 1976 May; 65(1):293-306. PubMed ID: 132350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of polyamines on proline endopeptidase activity in rat brain.
    Soeda S; Yamakawa N; Shimeno H; Nagamatsu A
    J Neurochem; 1986 Apr; 46(4):1304-7. PubMed ID: 3512777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.