BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6453212)

  • 1. Inhibitory effects of Zn2+ on muscle glycolysis and their reversal by histidine.
    Ikeda T; Kimura K; Morioka S; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(4):357-66. PubMed ID: 6453212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc as activating cation for muscle glycolysis.
    Tamaki N; Ikeda T; Funatsuka A
    J Nutr Sci Vitaminol (Tokyo); 1983 Dec; 29(6):655-62. PubMed ID: 6327959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of rabbit muscle fructose 1,6-bisphosphatase by histidine and carnosine.
    Ikeda T; Kimura K; Hama T; Tamaki N
    J Biochem; 1980 Jan; 87(1):179-85. PubMed ID: 6244260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of Zn2+ on rabbit muscle pyruvate kinase and reactivation by histidine.
    Tamaki N; Ikeda T; Kimura K; Morioka S
    J Nutr Sci Vitaminol (Tokyo); 1981; 27(2):107-16. PubMed ID: 7310548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotoxic effects of copper: inhibition of glycolysis and glycolytic enzymes.
    Lai JC; Blass JP
    Neurochem Res; 1984 Dec; 9(12):1699-710. PubMed ID: 6241658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of glycolysis by histidine buffers in mammalian liver during cold hypoxia.
    Churchill TA; Green CJ; Fuller BJ
    Arch Biochem Biophys; 1995 Jun; 320(1):43-50. PubMed ID: 7793983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on glycolysis in vitro: role of glucose phosphorylation and phosphofructokinase activity on total velocity.
    Meléndez-Hevia E; Siverio JM; Pérez JA
    Int J Biochem; 1984; 16(5):469-76. PubMed ID: 6233195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn2+-dependent reversible inactivation of rat liver phosphofructokinase-1. Purification of the inactivating protein and characterization of the inactivation reaction.
    Brand IA; Söling HD
    J Biol Chem; 1986 May; 261(13):5892-900. PubMed ID: 2939070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between fructose 2,6-bisphosphate and lactate production in skeletal muscle.
    Jones JP; MacLean PS; Winder WW
    J Appl Physiol (1985); 1994 May; 76(5):2169-76. PubMed ID: 8063683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual role of Zn2+ as inhibitor and activator of fructose 1,6-bisphosphatase of rat liver.
    Tejwani GA; Pedrosa FO; Pontremoli S; Horecker BL
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2692-5. PubMed ID: 8778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog.
    Wegener G; Krause U; Thuy M
    FEBS Lett; 1990 Jul; 267(2):257-60. PubMed ID: 2143142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration.
    Hue L; Sobrino F; Bosca L
    Biochem J; 1984 Dec; 224(3):779-86. PubMed ID: 6240979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation by insulin of glycolysis in cultured hepatocytes is attenuated by extracellular ATP and puromycin through purine-dependent inhibition of phosphofructokinase 2 activation.
    Probst I; Quentmeier A; Schweickhardt C; Unthan-Fechner K
    Eur J Biochem; 1989 Jun; 182(2):387-93. PubMed ID: 2525468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructose 1,6-bisphosphatase in rat liver cytosol: interactions between the effects of K+, Zn2+, Mn2+, and fructose 2,6-bisphosphate as measured in a steady-state assay.
    Mörikofer-Zwez S
    Arch Biochem Biophys; 1983 Jun; 223(2):572-83. PubMed ID: 6305284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis.
    Costa Leite T; Da Silva D; Guimarães Coelho R; Zancan P; Sola-Penna M
    Biochem J; 2007 Nov; 408(1):123-30. PubMed ID: 17666012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction.
    Bassols AM; Carreras J; Cussó R
    Biochem J; 1986 Dec; 240(3):747-51. PubMed ID: 3827864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glycolytic enzymes of rat liver and hepatomas by free fatty acids.
    Lea MA; Weber G; Morris HP
    Oncology; 1976; 33(5-6):205-8. PubMed ID: 194194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose 2,6-bisphosphate and the control of glycolysis by glucocorticoids and by other agents in rat hepatoma cells.
    Loiseau AM; Rousseau GG; Hue L
    Cancer Res; 1985 Sep; 45(9):4263-9. PubMed ID: 3161612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activating effect of adenosine on rat erythrocyte glycolysis.
    Gutierrez-Juarez R; Castrejon-Sosa M; Martinez-Valdez H; Blancas-Torres PG; Piña E; Madrid-Marina V
    Int J Biochem; 1992 Mar; 24(3):433-6. PubMed ID: 1532368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucagon and N6,O2'-dibutyryl adenosine 3':5'-monophosphate inhibition of lipogenesis and phosphofructokinase activity of hepatocytes from meal-fed rats.
    Ochs RS; Harris RA
    Lipids; 1980 Jul; 15(7):504-11. PubMed ID: 6251334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.