These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6453496)

  • 1. Changes in glucose 6-phosphate dehydrogenase and phosphofructokinase activity during maturation and ageing of red blood cells in children with chronic renal insufficiency.
    Eggert W; Scigalla P; Gross J
    Acta Haematol; 1981; 65(3):164-9. PubMed ID: 6453496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunologic study of the age-related loss of activity of six enzymes in the red cells from newborn infants and adults--evidence for a fetal type of erythrocyte phosphofructokinase.
    Kahn A; Boyer C; Cottreau D; Marie J; Boivin P
    Pediatr Res; 1977 Apr; 11(4):271-6. PubMed ID: 139592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Red cell system and selected red cell enzymes in men occupationally exposed to mercury vapours].
    Zabiński Z; Rutowski J; Moszczyński P; Dabrowski Z
    Przegl Lek; 2006; 63 Suppl 7():74-83. PubMed ID: 17784549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Change in inorganic pyrophosphatase during maturation and aging of red blood cells from newborns].
    Gross J; Staak R; Syllm-Rapoport I
    Acta Biol Med Ger; 1978; 37(3):403-8. PubMed ID: 735611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal properties in red blood cells of newborn infants.
    Gahr M; Meves H; Schröter W
    Pediatr Res; 1979 Nov; 13(11):1231-6. PubMed ID: 160031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of red blood cells in chronic renal failure. I. Glycolytic enzyme levels.
    Rodríguez-Commes JL; Tabernero JM; Martin-Vasallo P; De Castro S; Battaner E
    Nephron; 1979; 24(1):21-4. PubMed ID: 226898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Separation of red blood cells from G6PD-deficient patients in dextran density gradients].
    Grieger M; Bier K
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(2):290-306. PubMed ID: 6179832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cell metabolic alterations in postnatal life in term infants: glycolytic enzymes and glucose-6-phosphate dehydrogenase.
    Travis SF; Kumar SP; Paez PC; Delivoria-Papadopoulos M
    Pediatr Res; 1980 Dec; 14(12):1349-52. PubMed ID: 6451861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behaviour of cell physiological and biochemical indicators of maturation and aging of red blood cells in density fractionated red blood cells during a bleeding anaemia of the rabbit.
    Gross J; Coutelle C; Schulz W; Schmalisch G; Rosenthal S
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1986; 113(4):515-25. PubMed ID: 2431973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte phosphofructokinase and glucose-6-phosphate dehydrogenase in thyroid disorders.
    Kwiatkowska D; Tyran W; Dawiskiba J
    Endokrynol Pol; 1987; 38(6):449-55. PubMed ID: 2975992
    [No Abstract]   [Full Text] [Related]  

  • 11. Diurnal fluctuation of leukocyte G6PD activity. A possible explanation for the normal neutrophil bactericidal activity and the low incidence of pyogenic infections in patients with severe G6PD deficiency in Israel.
    Wolach B; Ashkenazi M; Grossmann R; Gavrieli R; Friedman Z; Bashan N; Roos D
    Pediatr Res; 2004 May; 55(5):807-13. PubMed ID: 14973180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-6-phosphate dehydrogenase activity decreases during storage of leukoreduced red blood cells.
    Peters AL; van Bruggen R; de Korte D; Van Noorden CJ; Vlaar AP
    Transfusion; 2016 Feb; 56(2):427-32. PubMed ID: 26456480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red cell G6PD decay in circulating cells: a possible marker for variants identification.
    Pescarmona GP; Turrini F; Naitana A; Bosia A; Perroni L
    Biomed Biochim Acta; 1983; 42(11-12):S291-2. PubMed ID: 6675706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Erythrocyte enzymes in chronic kidney failure].
    Khlebarova M; Dishlianova B; Belovezhdov N; Robeva R; Savova R
    Vutr Boles; 1985; 24(1):120-7. PubMed ID: 4024601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cell enzyme activity during blood storage and reactivation of phosphofructokinase.
    Noble NA; Tanaka KR; Myhre BA; Johnson DE
    Am J Hematol; 1982 Aug; 13(1):1-8. PubMed ID: 6215857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis.
    Barretto OC; Oshiro M; Oliveira RA; Fedullo JD; Nonoyama K
    Braz J Med Biol Res; 2006 May; 39(5):611-4. PubMed ID: 16648898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density increase and ageing of erythrocytes in stored blood.
    Rocchigiani M; Pescaglini M; Sestini S; Micheli V; Ricci C
    J Int Med Res; 1989; 17(5):461-6. PubMed ID: 2806715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cortisol on erythrocyte and reticulocyte enzymes: modulation of phosphofructokinase properties.
    Kwiatkowska D; Szajerka G; Kwiatkowska J
    Arch Immunol Ther Exp (Warsz); 1983; 31(3):381-7. PubMed ID: 6228205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo lability of red cell phosphofructokinase in term infants: the possible molecular basis of the relative phosphofructokinase deficiency in neonatal red cells.
    Travis SF; Garvin JH
    Pediatr Res; 1977 Nov; 11(11):1159-61. PubMed ID: 144264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte phosphofructokinase and glucose-6-phosphate dehydrogenase in leukemia.
    Kwiatkowska J; Zatoński W; Baranowski T
    Clin Chim Acta; 1973 May; 45(4):403-8. PubMed ID: 4269764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.