These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6453612)

  • 1. Studies of the kinetics of the isolated mitochondrial ATPase using dinitrophenol as a probe.
    Harris DA; Dall-Larsen T; Klungsøyr L
    Biochim Biophys Acta; 1981 Apr; 635(2):412-8. PubMed ID: 6453612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+.
    Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M
    J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the nucleotide-binding sites on the mitochondrial F1-ATPase through the use of a photoactivable derivative of adenylyl imidodiphosphate.
    Lunardi J; Vignais PV
    Biochim Biophys Acta; 1982 Oct; 682(1):124-34. PubMed ID: 6215942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex).
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol.
    Flores GO; Acosta A; Puyou AG
    Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of anions on the ATPase activity of submitochondrial particles].
    Ivashchenko AT; Uteulin KR
    Biokhimiia; 1983 Jan; 48(1):11-6. PubMed ID: 6219716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of adenylyl imidodiphosphate in the presence of Na+ + Mg2+ by (Na+ + K+)-activated ATPase.
    Schuurmans Stekhoven FM; Swarts HG; De Pont JJ; Bonting SL
    Biochim Biophys Acta; 1983 Dec; 736(1):73-8. PubMed ID: 6317029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring sites on mitochondrial ATPase for catalysis, regulation, and inhibition.
    Lardy HA; Schuster SM; Ebel RE
    J Supramol Struct; 1975; 3(3):214-21. PubMed ID: 127084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of nucleotide binding and coupled reactions utilising the mitochondrial ATPase.
    Harris DA; Gomez-Fernandez JC; Klungsøyr L; Radda GK
    Biochim Biophys Acta; 1978 Dec; 504(3):364-83. PubMed ID: 152644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylylimidodiphosphate release from the active site of submitochondrial particles ATPase.
    Chernyak BC; Kozlov IA
    FEBS Lett; 1979 Aug; 104(2):215-9. PubMed ID: 39003
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of inosine 5' -(beta, gamma-imido) triphosphate and other nucleotides on beef heart mitochondrial ATPase.
    Schuster SM; Gertschen RJ; Lardy HA
    J Biol Chem; 1976 Nov; 251(21):6705-10. PubMed ID: 135764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural rearrangements in soluble mitochondrial ATPase.
    Chernyak BV; Chernyak VY; Gladysheva TB; Kozhanova ZE; Kozlov IA
    Biochim Biophys Acta; 1981 May; 635(3):552-70. PubMed ID: 6453613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of the existence of two states of beef liver mitochondrial adenosine triphosphatase as revealed by kinetic studies.
    Wakagi T; Ohta T
    J Biochem; 1981 Apr; 89(4):1205-13. PubMed ID: 6454683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the weakly acidic uncoupler 2,4-dinitrophenol and dimethyl sulfoxide on the coordination of Mg2+ with ATP. Possible mechanism of activation of the isolated F1-ATPase by 2,4-dinitrophenol.
    Shinohara Y; Yoshikawa K; Terada H
    Biophys Chem; 1990 Aug; 36(3):201-8. PubMed ID: 2149660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles.
    Sorgato MC; Galiazzo F; Panato L; Ferguson SJ
    Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of homogeneous mitochondrial ATPase from rat liver with adenine nucleotides and inorganic phosphate.
    Pedersen PL
    J Supramol Struct; 1975; 3(3):222-30. PubMed ID: 127085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide effects on kinetic properties of mitochondrial ATPase.
    Campo ML; Cerdán E; López-Moratalla N; Santiago E
    Rev Esp Fisiol; 1987 Jun; 43(2):141-50. PubMed ID: 2958911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein.
    Tuena de Gómez-Puyou MT; Muller U; Dreyfus G; Ayala G; Gómez-Puyou A
    J Biol Chem; 1983 Nov; 258(22):13680-4. PubMed ID: 6227615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photoaffinity probe, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate.
    Williams N; Coleman PS
    J Biol Chem; 1982 Mar; 257(6):2834-41. PubMed ID: 6460764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.