BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6453612)

  • 1. Studies of the kinetics of the isolated mitochondrial ATPase using dinitrophenol as a probe.
    Harris DA; Dall-Larsen T; Klungsøyr L
    Biochim Biophys Acta; 1981 Apr; 635(2):412-8. PubMed ID: 6453612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+.
    Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M
    J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the nucleotide-binding sites on the mitochondrial F1-ATPase through the use of a photoactivable derivative of adenylyl imidodiphosphate.
    Lunardi J; Vignais PV
    Biochim Biophys Acta; 1982 Oct; 682(1):124-34. PubMed ID: 6215942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex).
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol.
    Flores GO; Acosta A; Puyou AG
    Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of anions on the ATPase activity of submitochondrial particles].
    Ivashchenko AT; Uteulin KR
    Biokhimiia; 1983 Jan; 48(1):11-6. PubMed ID: 6219716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of adenylyl imidodiphosphate in the presence of Na+ + Mg2+ by (Na+ + K+)-activated ATPase.
    Schuurmans Stekhoven FM; Swarts HG; De Pont JJ; Bonting SL
    Biochim Biophys Acta; 1983 Dec; 736(1):73-8. PubMed ID: 6317029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring sites on mitochondrial ATPase for catalysis, regulation, and inhibition.
    Lardy HA; Schuster SM; Ebel RE
    J Supramol Struct; 1975; 3(3):214-21. PubMed ID: 127084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of nucleotide binding and coupled reactions utilising the mitochondrial ATPase.
    Harris DA; Gomez-Fernandez JC; Klungsøyr L; Radda GK
    Biochim Biophys Acta; 1978 Dec; 504(3):364-83. PubMed ID: 152644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylylimidodiphosphate release from the active site of submitochondrial particles ATPase.
    Chernyak BC; Kozlov IA
    FEBS Lett; 1979 Aug; 104(2):215-9. PubMed ID: 39003
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of inosine 5' -(beta, gamma-imido) triphosphate and other nucleotides on beef heart mitochondrial ATPase.
    Schuster SM; Gertschen RJ; Lardy HA
    J Biol Chem; 1976 Nov; 251(21):6705-10. PubMed ID: 135764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural rearrangements in soluble mitochondrial ATPase.
    Chernyak BV; Chernyak VY; Gladysheva TB; Kozhanova ZE; Kozlov IA
    Biochim Biophys Acta; 1981 May; 635(3):552-70. PubMed ID: 6453613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of the existence of two states of beef liver mitochondrial adenosine triphosphatase as revealed by kinetic studies.
    Wakagi T; Ohta T
    J Biochem; 1981 Apr; 89(4):1205-13. PubMed ID: 6454683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the weakly acidic uncoupler 2,4-dinitrophenol and dimethyl sulfoxide on the coordination of Mg2+ with ATP. Possible mechanism of activation of the isolated F1-ATPase by 2,4-dinitrophenol.
    Shinohara Y; Yoshikawa K; Terada H
    Biophys Chem; 1990 Aug; 36(3):201-8. PubMed ID: 2149660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles.
    Sorgato MC; Galiazzo F; Panato L; Ferguson SJ
    Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of homogeneous mitochondrial ATPase from rat liver with adenine nucleotides and inorganic phosphate.
    Pedersen PL
    J Supramol Struct; 1975; 3(3):222-30. PubMed ID: 127085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide effects on kinetic properties of mitochondrial ATPase.
    Campo ML; Cerdán E; López-Moratalla N; Santiago E
    Rev Esp Fisiol; 1987 Jun; 43(2):141-50. PubMed ID: 2958911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein.
    Tuena de Gómez-Puyou MT; Muller U; Dreyfus G; Ayala G; Gómez-Puyou A
    J Biol Chem; 1983 Nov; 258(22):13680-4. PubMed ID: 6227615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photoaffinity probe, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate.
    Williams N; Coleman PS
    J Biol Chem; 1982 Mar; 257(6):2834-41. PubMed ID: 6460764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.