BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6454575)

  • 1. Ca2+ uptake, Ca2+-ATPase activity, phosphoprotein formation and phosphate turnover in a microsomal fraction of smooth muscle.
    Raeymaekers L; Hasselbach W
    Eur J Biochem; 1981 May; 116(2):373-8. PubMed ID: 6454575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle. Identification and characterization of an acid-stable phosphorylated intermediate of the Ca2+,Mg2+-ATPase.
    Sumida M; Okuda H; Hamada M
    J Biochem; 1984 Nov; 96(5):1365-74. PubMed ID: 6151948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of the phosphorylated intermediates of the Ca2+-transport ATPase in a microsomal fraction and in a (Ca2+ + Mg2+)-ATPase purified from smooth muscle by means of calmodulin affinity chromatography.
    Wuytack F; Raeymaekers L; De Schutter G; Casteels R
    Biochim Biophys Acta; 1982 Dec; 693(1):45-52. PubMed ID: 6129896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium uptake in smooth muscle microsomal vesicles is reduced by centrifugation.
    Raeymaekers L; Casteels R
    Cell Calcium; 1984 Jun; 5(3):205-10. PubMed ID: 6236878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-transport ATPases of vascular smooth muscle.
    Eggermont JA; Vrolix M; Raeymaekers L; Wuytack F; Casteels R
    Circ Res; 1988 Feb; 62(2):266-78. PubMed ID: 2962783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phosphoprotein intermediate of a Ca2+ transport ATPase in rat liver endoplasmic reticulum.
    Heilmann C; Spamer C; Gerok W
    Biochem Biophys Res Commun; 1983 Jul; 114(2):584-92. PubMed ID: 6136277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ca2+-transport ATPases in smooth muscle.
    Wuytack F; Raeymaekers L; Casteels R
    Experientia; 1985 Jul; 41(7):900-5. PubMed ID: 3159592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of a plasma-membrane fraction from gastric smooth muscle. Comparison of the calcium uptake with that in endoplasmic reticulum.
    Raeymaekers L; Wuytack F; Eggermont J; De Schutter G; Casteels R
    Biochem J; 1983 Feb; 210(2):315-22. PubMed ID: 6860302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M; Finegan JA; Katz AM
    J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle.
    Wibo M; Morel N; Godfraind T
    Biochim Biophys Acta; 1981 Dec; 649(3):651-60. PubMed ID: 6459127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ transport in muscle. A study of the Ca2+-transport ATPases in smooth muscle.
    Wuytack F
    Verh K Acad Geneeskd Belg; 1989; 51(3):269-93. PubMed ID: 2531511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-activated ATPase in microsomes from human liver.
    Spamer C; Heilmann C; Gerok W
    J Biol Chem; 1987 Jun; 262(16):7782-9. PubMed ID: 2953725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ uptake in bovine adrenocortical microsomes: formation of phosphorylated intermediate of Ca2+ dependent ATPase.
    Sumida M; Hamada M; Shimowake A; Morimoto C; Okuda H
    J Biochem; 1988 Nov; 104(5):687-92. PubMed ID: 2976756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum.
    Raeymaekers L; Wuytack F; Casteels R
    Biochim Biophys Acta; 1985 May; 815(3):441-54. PubMed ID: 3158351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active calcium transport by porcine thyroid microsomes.
    Nakamura Y; Miyamoto T; Koono M; Ohtaki S
    Endocrinology; 1986 Nov; 119(5):2058-65. PubMed ID: 2945712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin.
    Kwan CY
    Biochim Biophys Acta; 1985 Sep; 819(1):148-52. PubMed ID: 2931116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of vesicles derived from terminal cisternae and longitudinal tubules of sarcoplasmic reticulum isolated from rabbit skeletal muscle.
    Louis CF; Nash-Adler PA; Fudyma G; Shigekawa M; Akowitz A; Katz AM
    Eur J Biochem; 1980 Oct; 111(1):1-9. PubMed ID: 6449367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of microsomal ATPase activities: a comparison between the inorganic phosphate-release assay and the NADH-coupled enzyme assay.
    Missiaen L; Wuytack F; Kanmura Y; Van Belle H; Wynants J; Minten J; Casteels R
    Biochim Biophys Acta; 1989 Jan; 990(1):40-4. PubMed ID: 2536560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of intravesicular calcium phosphate deposits in microsomes of smooth muscle. A comparison with sarcoplasmic reticulum of skeletal muscle.
    Raeymaekers L; Agostini B; Hasselbach W
    Histochemistry; 1981; 70(2):139-50. PubMed ID: 7216831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.