BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6454575)

  • 21. Characterization of calmodulin-dependent and cyclic-AMP-dependent protein kinase stimulation of cardiac sarcoplasmic reticulum calcium transport.
    Katz S; Richter B; Eibschutz B
    Adv Myocardiol; 1985; 6():233-47. PubMed ID: 3158044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum.
    Lau YH
    Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron cytochemistry of oxalate-stimulated calcium uptake in microsomes from the smooth muscle of the pig stomach.
    Raeymaekers L; Agostini B; Hasselbach W
    Histochemistry; 1980 Feb; 65(2):121-9. PubMed ID: 7358519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles.
    Heilmann C; Brdiczka D; Nickel E; Pette D
    Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of tetrodotoxin relaxation of cultured skeletal muscle on the sarcoplasmic reticulum Ca2+-transport ATPase.
    Charuk JH; Holland PC
    Exp Cell Res; 1983 Mar; 144(1):143-57. PubMed ID: 6220916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partial purification of (Ca2+ + Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system.
    Wuytack F; De Schutter G; Casteels R
    Biochem J; 1981 Aug; 198(2):265-71. PubMed ID: 6119983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Ca2+ transport and enzyme activity in microsomes isolated from guinea-pig stomach smooth muscle.
    Miyagawa M; Sakai Y
    Comp Biochem Physiol A Comp Physiol; 1985; 80(4):565-70. PubMed ID: 2859140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport.
    Fleschner CR; Kraus-Friedmann N
    Eur J Biochem; 1986 Jan; 154(2):313-20. PubMed ID: 2935394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of calmodulin on the active calcium-ion transport and (Ca2+ + Mg2+)-dependent ATPase in microsomal fractions of smooth muscle compared with that in erythrocytes and cardiac muscle.
    Wuytack F; De Schutter G; Casteels R
    Biochem J; 1980 Sep; 190(3):827-31. PubMed ID: 6451219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes.
    Carley WW; Racker E
    Biochim Biophys Acta; 1982 May; 680(2):187-93. PubMed ID: 6212081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylated intermediates of (Ca2+ + Mg2+)-ATPase and alkaline phosphatase in renal plasma membranes.
    De Smedt H; Parys JB; Borghgraef R; Wuytack F
    Biochim Biophys Acta; 1983 Mar; 728(3):409-18. PubMed ID: 6130791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol.
    Vrolix M; Raeymaekers L; Wuytack F; Hofmann F; Casteels R
    Biochem J; 1988 Nov; 255(3):855-63. PubMed ID: 2850801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphoprotein formation and ADP-ATP exchange of cardiac sarcoplasmic reticulum.
    Suko J; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():117-23. PubMed ID: 1188148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of ATP on sarcoplasmic reticulum function of vascular smooth muscle.
    Ford GD; Hess ML
    Am J Physiol; 1982 Mar; 242(3):C242-9. PubMed ID: 6461258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles.
    Beeler TJ
    J Biol Chem; 1980 Oct; 255(19):9156-61. PubMed ID: 6106021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of a phosphorylated intermediate of the Ca,Mg-activated ATPase of microsomal vesicles from uterine smooth muscle.
    Carsten ME; Miller JD
    Arch Biochem Biophys; 1984 Aug; 232(2):616-23. PubMed ID: 6147119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-dependent uptake of Ca2+ by a microsomal fraction from rat incisor odontoblasts.
    Granström G; Linde A
    Calcif Tissue Int; 1981; 33(2):125-8. PubMed ID: 6452191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.