These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6455160)

  • 1. Studies on glutathione transport utilizing inside-out vesicles prepared from human erythrocytes.
    Kondo T; Dale GL; Beutler E
    Biochim Biophys Acta; 1981 Jul; 645(1):132-6. PubMed ID: 6455160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione transport by inside-out vesicles from human erythrocytes.
    Kondo T; Dale GL; Beutler E
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6359-62. PubMed ID: 6935650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leukotriene C(4) (LTC(4)) does not share a cellular efflux mechanism with cGMP: characterisation of cGMP transport by uptake to inside-out vesicles from human erythrocytes.
    Sundkvist E; Jaeger R; Sager G
    Biochim Biophys Acta; 2000 Jan; 1463(1):121-30. PubMed ID: 10631301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione S-conjugate transport using inside-out vesicles from human erythrocytes.
    Kondo T; Murao M; Taniguchi N
    Eur J Biochem; 1982 Jul; 125(3):551-4. PubMed ID: 7117253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent transport of glutathione-N-ethylmaleimide conjugate across erythrocyte membrane.
    Khanna P; Kumari K; Ansari NH; Srivastava SK
    Biochem Med Metab Biol; 1994 Dec; 53(2):105-14. PubMed ID: 7710766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione disulfide-stimulated Mg2+-ATPase of human erythrocyte membranes.
    Kondo T; Kawakami Y; Taniguchi N; Beutler E
    Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7373-7. PubMed ID: 2959960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dinitrophenyl glutathione efflux from human erythrocytes is primary active ATP-dependent transport.
    LaBelle EF; Singh SV; Srivastava SK; Awasthi YC
    Biochem J; 1986 Sep; 238(2):443-9. PubMed ID: 3643022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles.
    Heijn M; Oude Elferink RP; Jansen PL
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C104-10. PubMed ID: 1531100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium transport in human inside-out erythrocyte vesicles.
    Mollman JE; Pleasure DE
    J Biol Chem; 1980 Jan; 255(2):569-74. PubMed ID: 6444299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for different transport systems for oxidized glutathione and S-dinitrophenyl glutathione in human erythrocytes.
    LaBelle EF; Singh SV; Srivastava SK; Awasthi YC
    Biochem Biophys Res Commun; 1986 Sep; 139(2):538-44. PubMed ID: 3767975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte-oxidized glutathione transport in pyrimidine 5'-nucleotidase deficiency.
    Kondo T; Ohtsuka Y; Shimada M; Kawakami Y; Hiyoshi Y; Tsuji Y; Fujii H; Miwa S
    Am J Hematol; 1987 Sep; 26(1):37-45. PubMed ID: 2888306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple routes and regulation by tyrosine phosphorylation characterize the ATP-dependent transport of 2,4-dinitrophenyl S-glutathione in inside-out vesicles from human erythrocytes.
    Saxena M; Henderson GB
    Arch Biochem Biophys; 1997 Feb; 338(2):173-82. PubMed ID: 9028869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of (Ca + Mg)-ATPase activity with ATP-dependent Ca uptake in vesicles prepared from human erythrocytes.
    Quist EE; Roufogalis BD
    J Supramol Struct; 1977; 6(3):375-81. PubMed ID: 145517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active transport of GSSG from reconstituted erythrocyte ghosts.
    Prchal J; Srivastava SK; Beutler E
    Blood; 1975 Jul; 46(1):111-7. PubMed ID: 1131422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration and partial characterization of glutathione disulfide-stimulated ATPase activity in the plasma membrane fraction from rat hepatocytes.
    Nicotera P; Moore M; Bellomo G; Mirabelli F; Orrenius S
    J Biol Chem; 1985 Feb; 260(4):1999-2002. PubMed ID: 3156127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the substrate specificity of the red cell calcium pump.
    Enyedi A; Sarkadi B; Gárdos G
    Biochim Biophys Acta; 1982 Apr; 687(1):109-12. PubMed ID: 6978736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of active calcium transport in inside-out red cell membrane vesicles.
    Sarkadi B; Macintyre JD; Gárdos G
    FEBS Lett; 1978 May; 89(1):78-82. PubMed ID: 658404
    [No Abstract]   [Full Text] [Related]  

  • 18. Low- and high-Km transport of dinitrophenyl glutathione in inside out vesicles from human erythrocytes.
    Akerboom TP; Bartosz G; Sies H
    Biochim Biophys Acta; 1992 Jan; 1103(1):115-9. PubMed ID: 1730013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Ca2+ transport by membrane vesicles from pigeon erythrocytes. Stimulation by amino acids, ATP, GTP, Pi and some other cell constituents.
    Lee JW; Vidaver GA
    Biochim Biophys Acta; 1981 May; 643(2):421-34. PubMed ID: 6784766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP dependent primary active transport of xenobiotic-glutathione conjugates by human erythrocyte membrane.
    Awasthi YC; Singh SV; Ahmad H; Wronski LW; Srivastava SK; LaBelle EF
    Mol Cell Biochem; 1989 Nov 23-Dec 19; 91(1-2):131-6. PubMed ID: 2533663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.