BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6455165)

  • 1. Characterization of the plasma membrane ATPase of Candida tropicalis.
    Blasco F; Chapuis JP; Giordani R
    Biochimie; 1981 Jun; 63(6):507-14. PubMed ID: 6455165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities.
    Carreira J; Muñoz E
    Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proton-translocating ATPase of Candida tropicalis plasma membrane.
    Blasco F; Gidrol X
    Biochimie; 1982 Jul; 64(7):531-6. PubMed ID: 6215067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible inhibition of (Na+, K+) ATPase by Mg2+, adenosine triphosphate, and K+.
    Fagan JB; Racker E
    Biochemistry; 1977 Jan; 16(1):152-8. PubMed ID: 137742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and function of clostridial membrane ATPase.
    Riebeling V; Jungermann K
    Biochim Biophys Acta; 1976 Jun; 430(3):434-44. PubMed ID: 132964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some properties of the adenosine triphosphatase associated with herpes simplex virus and nuclear membrane of host cells.
    Matis J; Mucha V; Matisová E
    Acta Virol; 1978 Jan; 22(1):21-30. PubMed ID: 25004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetics and divalent cation inhibition of plasma membrane ATPase in the yeast Candida albicans.
    Hubbard MJ; Sullivan PA; Shepherd MG
    J Biol Chem; 1985 Jun; 260(11):6782-7. PubMed ID: 3158651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K+ and NH4(+) modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion.
    Garçon DP; Masui DC; Mantelatto FL; McNamara JC; Furriel RP; Leone FA
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):145-55. PubMed ID: 17276114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine triphosphatase activity in the neural lobe of the bovine pituitary gland.
    Vilhardt H; Hope DB
    Biochem J; 1974 Oct; 143(1):181-90. PubMed ID: 4282706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the peribacteroid membrane ATPase of lupin root nodules.
    Domigan NM; Farnden KJ; Robertson JG; Monk BC
    Arch Biochem Biophys; 1988 Aug; 264(2):564-73. PubMed ID: 2969700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The (Na + K+)-dependent ATPase. Mode of inhibition of ADP/ATP exchange activity by MgC12.
    Robinson JD
    Biochim Biophys Acta; 1976 Sep; 440(3):711-22. PubMed ID: 134746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a high-affinity Mg2+-independent Ca2+-ATPase from rat brain synaptosomal membranes.
    Gandhi CR; Ross DH
    J Neurochem; 1988 Jan; 50(1):248-56. PubMed ID: 2961847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation-stimulated ATPase activity in purified plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Wolfersberger MG; Cioffi M; Harvey WR
    Biochim Biophys Acta; 1986 May; 857(2):271-81. PubMed ID: 2939879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The isolation of plasma membrane and characterisation of the plasma membrane ATPase from the yeast Candida albicans.
    Hubbard MJ; Surarit R; Sullivan PA; Shepherd MG
    Eur J Biochem; 1986 Jan; 154(2):375-81. PubMed ID: 2935395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of plasma membrane adenosine triphosphatase of Neurospora crassa.
    Bowman BJ; Slayman CW
    J Biol Chem; 1977 May; 252(10):3357-63. PubMed ID: 16897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of (Na+ + K+)-ATPase. VII. Tryptic degradation of the Na-form of the enzyme protein resulting in selective modification of dephosphorylation reactions of the (Na+ + K+)-ATPase.
    Jørgensen PL; Klodos I
    Biochim Biophys Acta; 1978 Feb; 507(1):8-16. PubMed ID: 146517
    [No Abstract]   [Full Text] [Related]  

  • 19. (Na+ + K+)-ATPase: confirmation of the three-pool model for the phosphointermediates of Na+-ATPase activity. Estimation of the enzyme-ATP dissociation rate constant.
    Klodos I; Nørby JG
    Biochim Biophys Acta; 1987 Feb; 897(2):302-14. PubMed ID: 3028481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of adenosine triphosphate by way of potassium-sensitive phosphoenzyme of sodium, potassium adenosine triphosphatase.
    Post RL; Toda G; Kume S; Taniguchi K
    J Supramol Struct; 1975; 3(5-6):479-97. PubMed ID: 54512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.