These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 645549)

  • 41. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations.
    Tuzen M; Soylak M
    J Hazard Mater; 2009 Mar; 162(2-3):724-9. PubMed ID: 18584957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of manganese in blood and urine by flameless atomic absorption spectrophotometry.
    Buchet JP; Lauwerys R; Roels H; De Vos C
    Clin Chim Acta; 1976 Dec; 73(3):481-6. PubMed ID: 1000867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a new sequential injection in-line cloud point extraction system for flame atomic absorption spectrometric determination of manganese in food samples.
    Lemos VA; Baliza PX; de Carvalho AL; Oliveira RV; Teixeira LS; Bezerra MA
    Talanta; 2008 Oct; 77(1):388-93. PubMed ID: 18804650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations.
    Soylak M; Tuzen M
    J Hazard Mater; 2008 Apr; 152(2):656-61. PubMed ID: 17703875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow injection on-line displacement/solid phase extraction system coupled with flame atomic absorption spectrometry for selective trace silver determination in water samples.
    Christou CK; Anthemidis AN
    Talanta; 2009 Apr; 78(1):144-9. PubMed ID: 19174217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contributions to automated trace analysis. Part II. Rapid method for the automated determination of lead in whole blood by electrothermal atomic-absorption spectrophotometry.
    Stoeppler M; Brandt K; Rains TC
    Analyst; 1978 Jul; 103(1228):714-22. PubMed ID: 749560
    [No Abstract]   [Full Text] [Related]  

  • 47. Analysis for nickel in plasma and urine by electrothermal atomic absorption spectrometry, with sample preparation by protein precipitation.
    Andersen I; Torjussen W; Zachariasen H
    Clin Chem; 1978 Jul; 24(7):1198-202. PubMed ID: 657505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of manganese in urine by atomic absorption spectrometry.
    Ajemian RS; Whitman NE
    Am Ind Hyg Assoc J; 1969; 30(1):52-6. PubMed ID: 5774219
    [No Abstract]   [Full Text] [Related]  

  • 49. Improvement in the atomic absorption determination of lead in blood.
    Karai I; Fukumoto K; Horiguchi S
    J Appl Toxicol; 1981 Dec; 1(6):295-6. PubMed ID: 7185890
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of manganese in biological materials by atomic absorption spectroscopy.
    Suzuki M; Wacker WE
    Anal Biochem; 1974 Feb; 57(2):605-13. PubMed ID: 4856501
    [No Abstract]   [Full Text] [Related]  

  • 51. Urine as a material for evaluation of exposure to manganese in methcathinone users.
    Golasik M; Wodowski G; Gomółka E; Herman M; Piekoszewski W
    J Trace Elem Med Biol; 2014 Jul; 28(3):338-43. PubMed ID: 24867657
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Determination of urinary traces of manganese after extraction with the aid of 2,2,6,6-tetramethylheptane-3, 5-dione and atomic absorption spectrophotometry].
    Lekehal N; Hanocq M
    Anal Chim Acta; 1976 May; 83(1):93-101. PubMed ID: 5918
    [No Abstract]   [Full Text] [Related]  

  • 53. Determination of trace concentrations of lead and nickel in human milk by electrothermal atomisation atomic absorption spectrophotometry and inductively-coupled plasma emission spectroscopy.
    Rica CC; Kirkbright GF
    Sci Total Environ; 1982 Feb; 22(3):193-201. PubMed ID: 7079722
    [No Abstract]   [Full Text] [Related]  

  • 54. Atomic-absorption spectrophotometric determination of traces of manganese with thenoyltrifluoroacetone.
    Kato K
    Talanta; 1977 Aug; 24(8):503-7. PubMed ID: 18962129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct flameless atomic absorption determination of lead in blood.
    Hwang JY; Ullucci PA; Mokeler CJ
    Anal Chem; 1973 Apr; 45(4):795-8. PubMed ID: 4762369
    [No Abstract]   [Full Text] [Related]  

  • 56. Use of the carbon rod atomizer for analysis of lead in blood: three methods compared.
    Volosin MT; Kubasik NP; Sine HE
    Clin Chem; 1975 Dec; 21(13):1986-7. PubMed ID: 1192595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The direct determination of trace quantities of manganese in blood and serum samples using selective volatilization and graphite tube reservoir atomic absorption spectrophotometry.
    Ross RT; Gonzalez JG
    Bull Environ Contam Toxicol; 1974 Oct; 12(4):470-4. PubMed ID: 4433892
    [No Abstract]   [Full Text] [Related]  

  • 58. Comparative study on determination of lead in blood by flame and flameless atomic absorption spectrophotometry with and without wet digestion.
    Watanabe T; Iwahana T; Ikeda M
    Int Arch Occup Environ Health; 1977 Jun; 39(2):121-6. PubMed ID: 885621
    [No Abstract]   [Full Text] [Related]  

  • 59. [Significance of nickel analysis in clinical tests].
    Wada O; Kanai Y; Manabe S
    Nihon Rinsho; 1989 Dec; 48 Suppl():783-5. PubMed ID: 2622004
    [No Abstract]   [Full Text] [Related]  

  • 60. An evaluation of some atomic absorption systems for the determination of lead in blood.
    Anderson WN; Broughton PM; Dawson JB; Fisher GW
    Clin Chim Acta; 1974 Jan; 50(1):129-36. PubMed ID: 4816436
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.