These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6455536)

  • 1. Contractile protein dysfunction as a determinant of depressed cardiac contractility during endotoxin shock.
    Hess ML; Krause SM
    J Mol Cell Cardiol; 1981 Aug; 13(8):715-23. PubMed ID: 6455536
    [No Abstract]   [Full Text] [Related]  

  • 2. Cardiogenic endotoxin shock: coronary flow and contractile protein dysfunction as determinants of depressed cardiac contractility.
    Krause SM; Kleinman W; Hess ML
    Adv Shock Res; 1980; 3():105-16. PubMed ID: 6458200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial failure and excitation--contraction uncoupling in canine endotoxin shock: role of histamine and the sarcoplasmic reticulum.
    Hess ML; Krause SM; Kornwatana P
    Circ Shock; 1980; 7(3):277-87. PubMed ID: 6450000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When does the heart fail during shock?
    Raymond RM
    Circ Shock; 1990 Jan; 30(1):27-41. PubMed ID: 2137382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of myocardial dysfunction in endotoxin shock.
    Parker JL; Adams HR
    Am J Physiol; 1985 Jun; 248(6 Pt 2):H818-26. PubMed ID: 4003562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial function in feline endotoxin shock: a correlation between myocardial contractility, electrophysiology, and ultrastructure.
    McCaig DJ; Kane KA; Bailey G; Millington PF; Parratt JR
    Circ Shock; 1979; 6(3):201-11. PubMed ID: 498426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased myocardial contractility during endotoxin shock in dogs.
    Kober PM; Thomas JX; Raymond RM
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H715-22. PubMed ID: 4051010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of insulin on myocardial contractility during canine endotoxin shock.
    Law WR; McLane MP; Raymond RM
    Cardiovasc Res; 1988 Nov; 22(11):777-85. PubMed ID: 3076843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic mechanisms of myocardial dysfunction: cellular pathophysiology of heart failure.
    Figueredo VM; Camacho SA
    Curr Opin Cardiol; 1994 May; 9(3):272-9. PubMed ID: 8049585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin and beta adrenergic effects during endotoxin shock: in vivo myocardial interactions.
    Law WR; McLane MP; Raymond RM
    Cardiovasc Res; 1990 Jan; 24(1):72-80. PubMed ID: 2183937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic nonocclusive coronary artery constriction impairs ventricular function, myocardial structure, and cardiac contractile protein enzyme activity in rats.
    Capasso JM; Malhotra A; Li P; Zhang X; Scheuer J; Anversa P
    Circ Res; 1992 Jan; 70(1):148-62. PubMed ID: 1530779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac metabolsim: its contributions to alcoholic heart disease and myocardial failure.
    Bing RJ
    Circulation; 1978 Dec; 58(6):965-70. PubMed ID: 152168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock.
    Ichinose F; Buys ES; Neilan TG; Furutani EM; Morgan JG; Jassal DS; Graveline AR; Searles RJ; Lim CC; Kaneki M; Picard MH; Scherrer-Crosbie M; Janssens S; Liao R; Bloch KD
    Circ Res; 2007 Jan; 100(1):130-9. PubMed ID: 17138944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The excitation-contraction coupling system of the myocardium in canine hemorrhagic shock.
    Warner M; Smith JM; Eaton R; Robbins A; Hess ML
    Circ Shock; 1981; 8(5):563-72. PubMed ID: 6456852
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of SR Ca2+-ATPase in contractile dysfunction of myocytes in tachycardia-induced heart failure.
    Igarashi-Saito K; Tsutsui H; Yamamoto S; Takahashi M; Kinugawa S; Tagawa H; Usui M; Yamamoto M; Egashira K; Takeshita A
    Am J Physiol; 1998 Jul; 275(1):H31-40. PubMed ID: 9688893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium requirements of cardiac myofibril ATPase activity following exhaustive exercise.
    Belcastro AN; Sopper MM
    Int J Biochem; 1984; 16(1):93-8. PubMed ID: 6230274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of pH on the Ca2+-regulated ATPase of cardiac and white skeletal myofibrils.
    Kentish JC; Nayler WG
    J Mol Cell Cardiol; 1979 Jun; 11(6):611-7. PubMed ID: 37346
    [No Abstract]   [Full Text] [Related]  

  • 18. Protection of myocardial function during endotoxin shock by ibuprofen.
    Soulsby ME; Jacobs ER; Perlmutter BH; Bone RC
    Prostaglandins Leukot Med; 1984 Mar; 13(3):295-305. PubMed ID: 6585848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endotoxin-induced myocardial dysfunction: is there a role for nitric oxide?
    Keller RS; Jones JJ; Kim KF; Myers PR; Adams HR; Parker JL; Rubin LJ
    Shock; 1995 Nov; 4(5):338-44. PubMed ID: 8595520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of ventricular performance in shock.
    Goldfarb RD
    Circ Shock; 1985; 15(4):281-301. PubMed ID: 3995695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.