These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6456696)

  • 1. Regulation of glycolytic flux in an energetically controlled cell-free system: the effects of adenine nucleotide ratios, inorganic phosphate, pH, and citrate.
    Wu TF; Davis EJ
    Arch Biochem Biophys; 1981 Jun; 209(1):85-99. PubMed ID: 6456696
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of storage of blood in ACD-adenine-inorganic phosphate plus nucleosides on metabolic intermediates of human red cells.
    Chanutin A
    Transfusion; 1967; 7(6):409-19. PubMed ID: 6073342
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of glycolysis and L-glycerol 3-phosphate concentration in rat epididymal adipose tissue in vitro. Role of phosphofructokinase.
    Halperin ML; Denton RM
    Biochem J; 1969 Jun; 113(1):207-14. PubMed ID: 4308837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis.
    Minakami S; Yoshikawa H
    J Biochem; 1966 Feb; 59(2):145-50. PubMed ID: 4223319
    [No Abstract]   [Full Text] [Related]  

  • 5. Relation of inorganic orthophosphate and adenine dinucleotide phosphate to the Crabtree effect in mitochondria isolated from Ehrlich ascites tumor cells.
    Koobs DH; McKee RW
    Arch Biochem Biophys; 1966 Sep; 115(3):523-35. PubMed ID: 4226296
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of metabolism in working muscle in vivo. II. Concentrations of adenine nucleotides, arginine phosphate, and inorganic phosphate in insect flight muscle during flight.
    Sacktor B; Hurlbut EC
    J Biol Chem; 1966 Feb; 241(3):632-4. PubMed ID: 4222257
    [No Abstract]   [Full Text] [Related]  

  • 7. Citrate and the regulation of adipose-tissue phosphofructokinase.
    Denton RM; Randle PJ
    Biochem J; 1966 Aug; 100(2):420-3. PubMed ID: 4226177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of inhibition of glycolysis by quinidine in heart tissue in vitro.
    Horn RS
    Biochem Pharmacol; 1968 Aug; 17(8):1717-25. PubMed ID: 4233761
    [No Abstract]   [Full Text] [Related]  

  • 9. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 10. The stimulatory effect by insulin on the incorporation of 32P radioactive inorganic phosphate into intracellular inorganic phosphate, adenine nucleotides and guanine nucleotides of the intact isolated rat diaphragm.
    Walaas O; Walaas E; Wick AN
    Diabetologia; 1969 Apr; 5(2):79-87. PubMed ID: 4244688
    [No Abstract]   [Full Text] [Related]  

  • 11. Myocardial adenine nucleotides, hexose phosphates and inorganic phosphate, and the regulation of phosphofructokinase activity during fluoroacetate poisoning in the rat.
    Godoy HM; del Carmen Villarruel M
    Biochem Pharmacol; 1974 Nov; 23(22):3179-89. PubMed ID: 4155303
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides.
    Frenkel R
    Arch Biochem Biophys; 1968 Apr; 125(1):157-65. PubMed ID: 4296954
    [No Abstract]   [Full Text] [Related]  

  • 13. Stabilization of the adenylate energy charge by the depletion of adenylates without glycolytic stimulation.
    Yoshino M; Murakami K
    Biochem Biophys Res Commun; 1985 May; 129(1):287-92. PubMed ID: 3890854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanism of the stimulation of glycolysis and respiration by K+ in Saccharomyces cerevisiae.
    Peña A; Cinco G; Puyou AG; Tuena M
    Biochim Biophys Acta; 1969 May; 180(1):1-8. PubMed ID: 4239611
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymic control of fructolysis in primate spermatozoa.
    Hoskins DD; Stephens DT; Casillas ER
    Biochim Biophys Acta; 1971 May; 237(2):227-38. PubMed ID: 4328391
    [No Abstract]   [Full Text] [Related]  

  • 16. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 17. [The regulation of glycolysis in ascites tumor cells in the presence of 2,4-dinitrophenol].
    Schulz J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):442-7. PubMed ID: 4176842
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphates and phosphatases in preosseous cartilage.
    Jibril AO
    Biochim Biophys Acta; 1967 Aug; 141(3):605-13. PubMed ID: 4292847
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphate-induced efflux of adenine nucleotides from heart mitochondria.
    Asimakis GK; Conti VR
    Am J Physiol; 1985 Nov; 249(5 Pt 2):H1009-16. PubMed ID: 4061664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation of the light-dependent and light-triggered adenosine triphosphatases to photophosphorylation.
    Bennun A; Avron M
    Biochim Biophys Acta; 1965 Sep; 109(1):117-27. PubMed ID: 4222114
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.