BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6456696)

  • 1. Regulation of glycolytic flux in an energetically controlled cell-free system: the effects of adenine nucleotide ratios, inorganic phosphate, pH, and citrate.
    Wu TF; Davis EJ
    Arch Biochem Biophys; 1981 Jun; 209(1):85-99. PubMed ID: 6456696
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of storage of blood in ACD-adenine-inorganic phosphate plus nucleosides on metabolic intermediates of human red cells.
    Chanutin A
    Transfusion; 1967; 7(6):409-19. PubMed ID: 6073342
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of glycolysis and L-glycerol 3-phosphate concentration in rat epididymal adipose tissue in vitro. Role of phosphofructokinase.
    Halperin ML; Denton RM
    Biochem J; 1969 Jun; 113(1):207-14. PubMed ID: 4308837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis.
    Minakami S; Yoshikawa H
    J Biochem; 1966 Feb; 59(2):145-50. PubMed ID: 4223319
    [No Abstract]   [Full Text] [Related]  

  • 5. Relation of inorganic orthophosphate and adenine dinucleotide phosphate to the Crabtree effect in mitochondria isolated from Ehrlich ascites tumor cells.
    Koobs DH; McKee RW
    Arch Biochem Biophys; 1966 Sep; 115(3):523-35. PubMed ID: 4226296
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of metabolism in working muscle in vivo. II. Concentrations of adenine nucleotides, arginine phosphate, and inorganic phosphate in insect flight muscle during flight.
    Sacktor B; Hurlbut EC
    J Biol Chem; 1966 Feb; 241(3):632-4. PubMed ID: 4222257
    [No Abstract]   [Full Text] [Related]  

  • 7. Citrate and the regulation of adipose-tissue phosphofructokinase.
    Denton RM; Randle PJ
    Biochem J; 1966 Aug; 100(2):420-3. PubMed ID: 4226177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of inhibition of glycolysis by quinidine in heart tissue in vitro.
    Horn RS
    Biochem Pharmacol; 1968 Aug; 17(8):1717-25. PubMed ID: 4233761
    [No Abstract]   [Full Text] [Related]  

  • 9. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 10. The stimulatory effect by insulin on the incorporation of 32P radioactive inorganic phosphate into intracellular inorganic phosphate, adenine nucleotides and guanine nucleotides of the intact isolated rat diaphragm.
    Walaas O; Walaas E; Wick AN
    Diabetologia; 1969 Apr; 5(2):79-87. PubMed ID: 4244688
    [No Abstract]   [Full Text] [Related]  

  • 11. Myocardial adenine nucleotides, hexose phosphates and inorganic phosphate, and the regulation of phosphofructokinase activity during fluoroacetate poisoning in the rat.
    Godoy HM; del Carmen Villarruel M
    Biochem Pharmacol; 1974 Nov; 23(22):3179-89. PubMed ID: 4155303
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides.
    Frenkel R
    Arch Biochem Biophys; 1968 Apr; 125(1):157-65. PubMed ID: 4296954
    [No Abstract]   [Full Text] [Related]  

  • 13. Stabilization of the adenylate energy charge by the depletion of adenylates without glycolytic stimulation.
    Yoshino M; Murakami K
    Biochem Biophys Res Commun; 1985 May; 129(1):287-92. PubMed ID: 3890854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanism of the stimulation of glycolysis and respiration by K+ in Saccharomyces cerevisiae.
    Peña A; Cinco G; Puyou AG; Tuena M
    Biochim Biophys Acta; 1969 May; 180(1):1-8. PubMed ID: 4239611
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymic control of fructolysis in primate spermatozoa.
    Hoskins DD; Stephens DT; Casillas ER
    Biochim Biophys Acta; 1971 May; 237(2):227-38. PubMed ID: 4328391
    [No Abstract]   [Full Text] [Related]  

  • 16. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 17. [The regulation of glycolysis in ascites tumor cells in the presence of 2,4-dinitrophenol].
    Schulz J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):442-7. PubMed ID: 4176842
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphates and phosphatases in preosseous cartilage.
    Jibril AO
    Biochim Biophys Acta; 1967 Aug; 141(3):605-13. PubMed ID: 4292847
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphate-induced efflux of adenine nucleotides from heart mitochondria.
    Asimakis GK; Conti VR
    Am J Physiol; 1985 Nov; 249(5 Pt 2):H1009-16. PubMed ID: 4061664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation of the light-dependent and light-triggered adenosine triphosphatases to photophosphorylation.
    Bennun A; Avron M
    Biochim Biophys Acta; 1965 Sep; 109(1):117-27. PubMed ID: 4222114
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.