These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 6457764)
41. Effects of vanadate and insulin on glucose 1,6-P2 and fructose 2,6-P2 levels in rat skeletal muscle. Carreras M; Bassols AM; Carreras J; Climent F Biochem Int; 1988 Aug; 17(2):359-66. PubMed ID: 3056413 [TBL] [Abstract][Full Text] [Related]
42. Rapid changes in carbohydrate metabolism in muscle induced by triiodothyronine; the role of glucose 1,6-bisphosphate. Chen-Zion M; Bassukevitz Y; Beitner R Biochem Mol Med; 1995 Oct; 56(1):19-25. PubMed ID: 8593533 [TBL] [Abstract][Full Text] [Related]
43. Aspects of the mechanism of action of local anesthetics on the sarcoplasmic reticulum of skeletal muscle. Suko J; Winkler F; Scharinger B; Hellmann G Biochim Biophys Acta; 1976 Sep; 443(3):571-86. PubMed ID: 134747 [TBL] [Abstract][Full Text] [Related]
44. Relationship between carbohydrate oxidation and G-1,6-P2 in human skeletal muscle during euglycemic hyperinsulinemia. Katz A; Bogardus C Am J Physiol; 1991 Jan; 260(1 Pt 2):R113-9. PubMed ID: 1825156 [TBL] [Abstract][Full Text] [Related]
45. Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation. Cadefau JA; Parra J; Cussó R; Heine G; Pette D Pflugers Arch; 1993 Sep; 424(5-6):529-37. PubMed ID: 8255737 [TBL] [Abstract][Full Text] [Related]
46. Metabolism of glucose 1,6-P2--III. Partial purification and characterization of glucose 1,6-P2 synthase from pig skeletal muscle. Carreras M; Carreras J; Climent F Comp Biochem Physiol B; 1988; 90(4):739-44. PubMed ID: 2854765 [TBL] [Abstract][Full Text] [Related]
47. [Changes in the serotonin and histamine content of blood platelets due to the effect of local anesthetics]. Markwardt F; Barthel W; Glusa E Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1966; 253(3):336-44. PubMed ID: 4223202 [No Abstract] [Full Text] [Related]
48. Phosphofructokinase in rat lung during perinatal development: characterization of subunit composition and regulation by fructose 2,6-bisphosphate and glucose 1,6-bisphosphate. Heesbeen EC; Rijksen G; Batenburg JJ; van Golde LM; Staal GE Biochim Biophys Acta; 1987 May; 924(2):284-91. PubMed ID: 2952174 [TBL] [Abstract][Full Text] [Related]
49. Energy metabolism of skeletal muscle biopsies stimulated anaerobically without load in vitro. Young DA; Chi MM; Lowry OH Am J Physiol; 1986 Jun; 250(6 Pt 1):C813-20. PubMed ID: 2940874 [TBL] [Abstract][Full Text] [Related]
50. Rapid phloretin-induced dephosphorylation of 2-deoxyglucose-6-phosphate in rat adipocytes. Wieringa T; van Putten JP; Krans HM Biochem Biophys Res Commun; 1981 Dec; 103(3):841-7. PubMed ID: 7332579 [No Abstract] [Full Text] [Related]
51. Reaction of the isosteric methylenephosphonate analog of alpha-D-glucose 1-phosphate with phosphoglucomutase. Induced-fit specificity revisited. Ray WJ; Post CB; Puvathingal JM Biochemistry; 1993 Jan; 32(1):38-47. PubMed ID: 8418857 [TBL] [Abstract][Full Text] [Related]
52. The concentrations of glucose 1,6-bisphosphate and other regulatory metabolites, and the activities of enzymes of the glycogen metabolism in the perfused rabbit psoas muscle. Bauer HP; Birkel G; Hofer HW Int J Biochem; 1986; 18(1):73-7. PubMed ID: 3002883 [TBL] [Abstract][Full Text] [Related]
53. Circulatory deterioration as the determinant of energy metabolism in endotoxin shock. Lundsgaard-Hansen P; Pappova E; Urbaschek B; Heitmann L; Laederach A; Molnes N; Oroz M; Wirth U J Surg Res; 1972 Dec; 13(6):282-8. PubMed ID: 4265792 [No Abstract] [Full Text] [Related]
54. Euglycemic hyperinsulinemia increases glucose 1,6-bisphosphate in human skeletal muscle. Katz A; Nyomba BL; Bogardus C Int J Biochem; 1989; 21(10):1079-82. PubMed ID: 2684699 [TBL] [Abstract][Full Text] [Related]
55. Zinc as activating cation for muscle glycolysis. Tamaki N; Ikeda T; Funatsuka A J Nutr Sci Vitaminol (Tokyo); 1983 Dec; 29(6):655-62. PubMed ID: 6327959 [TBL] [Abstract][Full Text] [Related]
56. A refinement of the Akabayashi-Saito-Kato modification of the enzymatic methods for 2-deoxyglucose and 2-deoxyglucose 6-phosphate. Chi MM; Manchester JK; Carter JG; Pusateri ME; McDougal DB; Lowry OH Anal Biochem; 1993 Mar; 209(2):335-8. PubMed ID: 8470806 [TBL] [Abstract][Full Text] [Related]
57. Mechanism-based inactivation of rabbit muscle phosphoglucomutase by nojirimycin 6-phosphate. Kim SC; Raushel FM Biochemistry; 1988 Sep; 27(19):7328-32. PubMed ID: 2974722 [TBL] [Abstract][Full Text] [Related]
58. Distribution of the flux control in convergent metabolic pathways: theory and application to experimental and simulated systems. Torres NV; Mateo F; Sicilia J; Meléndez-Hevia E Int J Biochem; 1988; 20(2):161-5. PubMed ID: 2965041 [TBL] [Abstract][Full Text] [Related]