BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6457906)

  • 1. Behavior of trypsin and related enzymes toward amidinophenyl esters.
    Nozawa M; Tanizawa K; Kanaoka Y; Moriya H
    J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse substrates: novel synthetic substrates for trypsin and related enzymes.
    Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Inverse substrates" for trypsin-like enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Pharmacobiodyn; 1980 Apr; 3(4):213-9. PubMed ID: 6451682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins.
    Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters.
    Tanizawa K; Kanaoka Y
    J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential roles of alkylammonium and alkylguanidinium ions in trypsin-catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of "inverse substrates".
    Tanizawa K; Nakano M; Lawson WB; Kanaoka Y
    J Biochem; 1982 Sep; 92(3):945-51. PubMed ID: 7142128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic properties of serine proteases. 2. Comparison between human urinary kallikrein and human urokinase, bovine beta-trypsin, bovine thrombin, and bovine alpha-chymotrypsin.
    Ascenzi P; Menegatti E; Guarneri M; Bortolotti F; Antonini E
    Biochemistry; 1982 May; 21(10):2483-90. PubMed ID: 7046788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reagents for reversible coupling of proteins to the active centres of trypsin-like serine proteinases.
    Kalindjian SB; Smith RA
    Biochem J; 1987 Dec; 248(2):409-13. PubMed ID: 2963619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of tryptic enzymes based on enantiomeric specificity at the deacylation step.
    Yamada H; Tanizawa K; Kanaoka Y
    FEBS Lett; 1988 Jan; 227(2):195-7. PubMed ID: 2962887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative specificity of porcine pancreatic kallikrein and bovine pancreatic trypsin. Importance of interactions N-terminal to the scissible bond.
    Bizzozero SA; Dutler H
    Arch Biochem Biophys; 1987 Aug; 256(2):662-76. PubMed ID: 3650053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the active sites of bovine thrombin, factor IXa, factor Xa, factor XIa, factor XIIa, plasma kallikrein, and trypsin with amino acid and peptide thioesters: development of new sensitive substrates.
    McRae BJ; Kurachi K; Heimark RL; Fujikawa K; Davie EW; Powers JC
    Biochemistry; 1981 Dec; 20(25):7196-206. PubMed ID: 6976185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic study of the effect of heparin on the amidase activity of trypsin, plasmin and urokinase.
    Yomtova VM; Stambolieva NA; Blagoev BM
    Thromb Haemost; 1983 Jun; 49(3):199-203. PubMed ID: 6224310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin.
    Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S
    Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Streptomyces griseus and bovine trypsin by active site analysis using fluorescent acyl groups.
    Tanizawa K; Nakano M; Kanaoka Y
    Biochim Biophys Acta; 1987 Jul; 913(3):292-9. PubMed ID: 3109486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypsin-catalyzed synthesis of dipeptide containing alpha-aminoisobutyric acid using p- and m-(amidinomethyl)phenyl esters as acyl donor.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Kojoma M; Tanizawa K
    Chem Pharm Bull (Tokyo); 2008 May; 56(5):688-91. PubMed ID: 18451559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.